
How do you convert the polar point $ (6,{120^ \circ }) $ into rectangular form ?
Answer
534.9k+ views
Hint: In order to solve this question , we need to first understand the mathematical terms what are polar coordinates and what are rectangular coordinates and what is their significance . If we talk about the polar coordinates , then Polar Coordinates $ (p,\theta ) $ is actually a 2D coordinate system in which every point on the plane is found by a distance $ p $ from a reference point and an angle i . e . $ \theta $ from a reference direction where $ p $ is the radial coordinate and $ \theta $ is known as the angular coordinate.
If we take our question then the given polar coordinate is $ (6,{120^ \circ }) $ .
Radial coordinate = $ p\,/\,r = 6 $
Angular coordinate $ = \theta = {120^ \circ } $
Complete step-by-step answer:
So , Lets convert the polar coordinate into rectangular coordinates .
Now to transformation by which we can find our rectangular coordinates $ \left( {x,y} \right) $ is
$
x = r\cos \theta \\
y = r\sin \theta \;
$
In our case $ r = 6\,and\,\theta = {120^ \circ } = \dfrac{{2\pi }}{3} $
$
x = 6\cos \left( {\dfrac{{2\pi }}{3}} \right) \\
= 6\cos \left( {\pi - \dfrac{\pi }{3}} \right) \;
$
Using Allied angle in trigonometry $ \cos \left( {\pi - \theta } \right) = - \cos \theta $
$
= - 6\cos \left( {\dfrac{\pi }{3}} \right) \\
= - 6\left( {\dfrac{1}{2}} \right) \\
= - 3 \;
$ using trigonometric value of $ \cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2} $
$
y = 6\sin \left( {\dfrac{{2\pi }}{3}} \right) \\
= 6\sin \left( {\pi - \dfrac{\pi }{3}} \right) \;
$
Using Allied angle in trigonometry $ \sin \left( {\pi - \theta } \right) = \sin \theta $
$
= 6\sin \left( {\dfrac{\pi }{3}} \right) \\
= 6\left( {\dfrac{{\sqrt 3 }}{2}} \right) \\
= 3\sqrt 3 \;
$ using trigonometric value of $ \sin \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }} $
Therefore, polar coordinates $ (6,{120^ \circ }) $ in rectangular coordinates are $ \left( { - 3,3\sqrt 3 } \right) $ .
So, the correct answer is “$\left( { - 3,3\sqrt 3 } \right) $ ”.
Note: 1.One must be careful while taking values from the trigonometric table and cross-check at least once
2.To verify your answer, plot both polar and rectangular coordinates on the cartesian plane and if both are the same then the answer is correct and if they both do not represent the same point then your transformation is wrong ,check your solution.
We use the following formulaTrigonometric Form or Polar form
$ \sin \left( {\pi + \theta } \right) = - \sin \theta $
$ \cos \left( {\pi + \theta } \right) = - \cos \theta $
If we take our question then the given polar coordinate is $ (6,{120^ \circ }) $ .
Radial coordinate = $ p\,/\,r = 6 $
Angular coordinate $ = \theta = {120^ \circ } $
Complete step-by-step answer:
So , Lets convert the polar coordinate into rectangular coordinates .
Now to transformation by which we can find our rectangular coordinates $ \left( {x,y} \right) $ is
$
x = r\cos \theta \\
y = r\sin \theta \;
$
In our case $ r = 6\,and\,\theta = {120^ \circ } = \dfrac{{2\pi }}{3} $
$
x = 6\cos \left( {\dfrac{{2\pi }}{3}} \right) \\
= 6\cos \left( {\pi - \dfrac{\pi }{3}} \right) \;
$
Using Allied angle in trigonometry $ \cos \left( {\pi - \theta } \right) = - \cos \theta $
$
= - 6\cos \left( {\dfrac{\pi }{3}} \right) \\
= - 6\left( {\dfrac{1}{2}} \right) \\
= - 3 \;
$ using trigonometric value of $ \cos \left( {\dfrac{\pi }{3}} \right) = \dfrac{1}{2} $
$
y = 6\sin \left( {\dfrac{{2\pi }}{3}} \right) \\
= 6\sin \left( {\pi - \dfrac{\pi }{3}} \right) \;
$
Using Allied angle in trigonometry $ \sin \left( {\pi - \theta } \right) = \sin \theta $
$
= 6\sin \left( {\dfrac{\pi }{3}} \right) \\
= 6\left( {\dfrac{{\sqrt 3 }}{2}} \right) \\
= 3\sqrt 3 \;
$ using trigonometric value of $ \sin \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }} $
Therefore, polar coordinates $ (6,{120^ \circ }) $ in rectangular coordinates are $ \left( { - 3,3\sqrt 3 } \right) $ .
So, the correct answer is “$\left( { - 3,3\sqrt 3 } \right) $ ”.
Note: 1.One must be careful while taking values from the trigonometric table and cross-check at least once
2.To verify your answer, plot both polar and rectangular coordinates on the cartesian plane and if both are the same then the answer is correct and if they both do not represent the same point then your transformation is wrong ,check your solution.
We use the following formulaTrigonometric Form or Polar form
$ \sin \left( {\pi + \theta } \right) = - \sin \theta $
$ \cos \left( {\pi + \theta } \right) = - \cos \theta $
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

