
Convert the following products into factorials: \[\left( n+1 \right)\left( n+2 \right)\left( n+3 \right)....\left( 2n \right)\].
Answer
508.2k+ views
Hint: To find the factorial we need to use a factorial that contains the elements given in the product. By multiplying the same element in both the numerator and denominator we will find the factorial. The formula to convert a product from product to factorial is:
\[\dfrac{x!P}{x!}\]
where \[x!\] is the factorial that we have to multiply to simplify the product according to the question and \[P\] is the product given in the question.
Complete step-by-step answer:
To find the factorial from the product we need two forms of factorial:
\[n!=1\times 2\times 3\times ....\times (n-1)\times n\]
\[\left( 2n \right)!=1\times 2\times 3\times ....\times \left( n-1 \right)\times n\times \left( n+1 \right)\times \left( n+2 \right)\times ......\times (2n-1)\times 2n\]
Now multiplying the \[n!\] both in numerator and denominator we get:
\[\Rightarrow \dfrac{n!}{n!}\times \dfrac{\left( n+1 \right)\times \left( n+2 \right)\times \left( n+3 \right)\times ....\times \left( 2n \right)}{1}\]
Expanding the factorial in the above equation we get:
\[\Rightarrow \dfrac{\left[ 1\times 2\times 3\times ....\times (n-1)\times n \right]\left[ \left( n+1 \right)\times \left( n+2 \right)\times \left( n+3 \right)\times ....\times \left( 2n \right) \right]}{1\times 2\times 3\times ....\times (n-1)\times n}\]
\[\Rightarrow \dfrac{1\times 2\times 3\times ....\times (n-1)\times n\times \left( n+1 \right)\times \left( n+2 \right)\times \left( n+3 \right)\times ....\times \left( 2n \right)}{1\times 2\times 3\times ....\times (n-1)\times n}\]
Now the numerator is similar to the factorial of \[2n\] and the denominator was \[n!\] hence, the numerator is given as:
\[\Rightarrow \dfrac{2n!}{1\times 2\times 3\times ....\times (n-1)\times n}\]
\[\Rightarrow \dfrac{2n!}{n!}\]
\[\therefore \] The factorial value of the product is \[\dfrac{2n!}{n!}\].
Note: Another method to solve the question is that we know that in factorial value of \[2n\]is \[\left( 2n \right)!=1\times 2\times 3\times ....\times \left( n-1 \right)\times n\times \left( n+1 \right)\times \left( n+2 \right)\times ......\times (2n-1)\times 2n\]. Now the product given in the question is half the factorial value of \[2n\]. Hence, the product can also be written as:
\[\Rightarrow \left( n+1 \right)\left( n+2 \right)\left( n+3 \right)....\left( 2n \right)\]
\[\Rightarrow \left( n+1 \right)\left( n+2 \right)\left( n+3 \right)....\left( 2n \right)=\dfrac{2n!}{1\times 2\times 3\times ....\times (n-1)\times n}\]
Now changing the denominator into factorial form we get:
\[\Rightarrow \left( n+1 \right)\left( n+2 \right)\left( n+3 \right)....\left( 2n \right)=\dfrac{2n!}{n!}\]
\[\dfrac{x!P}{x!}\]
where \[x!\] is the factorial that we have to multiply to simplify the product according to the question and \[P\] is the product given in the question.
Complete step-by-step answer:
To find the factorial from the product we need two forms of factorial:
\[n!=1\times 2\times 3\times ....\times (n-1)\times n\]
\[\left( 2n \right)!=1\times 2\times 3\times ....\times \left( n-1 \right)\times n\times \left( n+1 \right)\times \left( n+2 \right)\times ......\times (2n-1)\times 2n\]
Now multiplying the \[n!\] both in numerator and denominator we get:
\[\Rightarrow \dfrac{n!}{n!}\times \dfrac{\left( n+1 \right)\times \left( n+2 \right)\times \left( n+3 \right)\times ....\times \left( 2n \right)}{1}\]
Expanding the factorial in the above equation we get:
\[\Rightarrow \dfrac{\left[ 1\times 2\times 3\times ....\times (n-1)\times n \right]\left[ \left( n+1 \right)\times \left( n+2 \right)\times \left( n+3 \right)\times ....\times \left( 2n \right) \right]}{1\times 2\times 3\times ....\times (n-1)\times n}\]
\[\Rightarrow \dfrac{1\times 2\times 3\times ....\times (n-1)\times n\times \left( n+1 \right)\times \left( n+2 \right)\times \left( n+3 \right)\times ....\times \left( 2n \right)}{1\times 2\times 3\times ....\times (n-1)\times n}\]
Now the numerator is similar to the factorial of \[2n\] and the denominator was \[n!\] hence, the numerator is given as:
\[\Rightarrow \dfrac{2n!}{1\times 2\times 3\times ....\times (n-1)\times n}\]
\[\Rightarrow \dfrac{2n!}{n!}\]
\[\therefore \] The factorial value of the product is \[\dfrac{2n!}{n!}\].
Note: Another method to solve the question is that we know that in factorial value of \[2n\]is \[\left( 2n \right)!=1\times 2\times 3\times ....\times \left( n-1 \right)\times n\times \left( n+1 \right)\times \left( n+2 \right)\times ......\times (2n-1)\times 2n\]. Now the product given in the question is half the factorial value of \[2n\]. Hence, the product can also be written as:
\[\Rightarrow \left( n+1 \right)\left( n+2 \right)\left( n+3 \right)....\left( 2n \right)\]
\[\Rightarrow \left( n+1 \right)\left( n+2 \right)\left( n+3 \right)....\left( 2n \right)=\dfrac{2n!}{1\times 2\times 3\times ....\times (n-1)\times n}\]
Now changing the denominator into factorial form we get:
\[\Rightarrow \left( n+1 \right)\left( n+2 \right)\left( n+3 \right)....\left( 2n \right)=\dfrac{2n!}{n!}\]
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE
