
How do you convert $ r = \dfrac{3}{{3 - \cos \theta }} $ to rectangular form?
Answer
527.1k+ views
Hint: In order to convert $ r = \dfrac{3}{{3 - \cos \theta }} $ into rectangular form, we should know first what rectangular form is. A rectangular form of an equation is an equation consisting of variables that can be marked on the regular cartesian plane.
Complete step by step solution:
We are given with $ r = \dfrac{3}{{3 - \cos \theta }} $ .
Writing the reciprocal of the equation and we get:
$
r = \dfrac{3}{{3 - \cos \theta }} \\
\dfrac{1}{r} = \dfrac{1}{{\dfrac{3}{{3 - \cos \theta }}}} \\
\dfrac{1}{r} = \dfrac{{3 - \cos \theta }}{3} = 1 - \dfrac{1}{3}\cos \theta \;
$
And, we can see that this is representing the value of an ellipse of eccentricity $ \dfrac{1}{3} $ .
From cartesian and polar form, we know that:
$ r = \sqrt {{x^2} + {y^2}} $ , $ \cos \theta = \dfrac{x}{r} = \dfrac{x}{{\sqrt {{x^2} + {y^2}} }} $ and $ \sin \theta = \dfrac{y}{r} = \dfrac{y}{{\sqrt {{x^2} + {y^2}} }} $ .
Substituting the values of $ r = \sqrt {{x^2} + {y^2}} $ , $ \cos \theta = \dfrac{x}{r} = \dfrac{x}{{\sqrt {{x^2} + {y^2}} }} $ in $ r = \dfrac{3}{{3 - \cos \theta }} $ , we get:
$ \sqrt {{x^2} + {y^2}} = \dfrac{3}{{3 - \dfrac{x}{{\sqrt {{x^2} + {y^2}} }}}} $
On further solving, we get:
$
\sqrt {{x^2} + {y^2}} \left( {3 - \dfrac{x}{{\sqrt {{x^2} + {y^2}} }}} \right) = 3 \\
3\sqrt {{x^2} + {y^2}} - x\dfrac{{\sqrt {{x^2} + {y^2}} }}{{\sqrt {{x^2} + {y^2}} }} = 3 \\
3\sqrt {{x^2} + {y^2}} - x = 3 \\
3\sqrt {{x^2} + {y^2}} = 3 + x \;
$
Squaring both the sides:
$
{\left( {3\sqrt {{x^2} + {y^2}} } \right)^2} = {\left( {3 + x} \right)^2} \\
9\left( {{x^2} + {y^2}} \right) = 9 + {x^2} + 6x \\
9{x^2} + 9{y^2} - 9 - {x^2} - 6x = 0 \\
8{x^2} + 9{y^2} - 6x - 9 = 0 \;
$
Since, we already saw that the equation represents an ellipse, so the equation obtained is the rectangular form of the ellipse equation.
Therefore, $ r = \dfrac{3}{{3 - \cos \theta }} $ in rectangular form is $ 8{x^2} + 9{y^2} - 6x - 9 = 0 $ .
So, the correct answer is “ $ 8{x^2} + 9{y^2} - 6x - 9 = 0 $ .”.
Note: Polar form of an equation is represented by $ r(\cos \theta ,\sin \theta ) $ .
Rectangular form is written in the cartesian format, in point form that can be graphed on the cartesian plane.
Relation between Polar and Cartesian values: $ r = \sqrt {{x^2} + {y^2}} $ , $ \cos \theta = \dfrac{x}{r} = \dfrac{x}{{\sqrt {{x^2} + {y^2}} }} $ and $ \sin \theta = \dfrac{y}{r} = \dfrac{y}{{\sqrt {{x^2} + {y^2}} }} $ .
Complete step by step solution:
We are given with $ r = \dfrac{3}{{3 - \cos \theta }} $ .
Writing the reciprocal of the equation and we get:
$
r = \dfrac{3}{{3 - \cos \theta }} \\
\dfrac{1}{r} = \dfrac{1}{{\dfrac{3}{{3 - \cos \theta }}}} \\
\dfrac{1}{r} = \dfrac{{3 - \cos \theta }}{3} = 1 - \dfrac{1}{3}\cos \theta \;
$
And, we can see that this is representing the value of an ellipse of eccentricity $ \dfrac{1}{3} $ .
From cartesian and polar form, we know that:
$ r = \sqrt {{x^2} + {y^2}} $ , $ \cos \theta = \dfrac{x}{r} = \dfrac{x}{{\sqrt {{x^2} + {y^2}} }} $ and $ \sin \theta = \dfrac{y}{r} = \dfrac{y}{{\sqrt {{x^2} + {y^2}} }} $ .
Substituting the values of $ r = \sqrt {{x^2} + {y^2}} $ , $ \cos \theta = \dfrac{x}{r} = \dfrac{x}{{\sqrt {{x^2} + {y^2}} }} $ in $ r = \dfrac{3}{{3 - \cos \theta }} $ , we get:
$ \sqrt {{x^2} + {y^2}} = \dfrac{3}{{3 - \dfrac{x}{{\sqrt {{x^2} + {y^2}} }}}} $
On further solving, we get:
$
\sqrt {{x^2} + {y^2}} \left( {3 - \dfrac{x}{{\sqrt {{x^2} + {y^2}} }}} \right) = 3 \\
3\sqrt {{x^2} + {y^2}} - x\dfrac{{\sqrt {{x^2} + {y^2}} }}{{\sqrt {{x^2} + {y^2}} }} = 3 \\
3\sqrt {{x^2} + {y^2}} - x = 3 \\
3\sqrt {{x^2} + {y^2}} = 3 + x \;
$
Squaring both the sides:
$
{\left( {3\sqrt {{x^2} + {y^2}} } \right)^2} = {\left( {3 + x} \right)^2} \\
9\left( {{x^2} + {y^2}} \right) = 9 + {x^2} + 6x \\
9{x^2} + 9{y^2} - 9 - {x^2} - 6x = 0 \\
8{x^2} + 9{y^2} - 6x - 9 = 0 \;
$
Since, we already saw that the equation represents an ellipse, so the equation obtained is the rectangular form of the ellipse equation.
Therefore, $ r = \dfrac{3}{{3 - \cos \theta }} $ in rectangular form is $ 8{x^2} + 9{y^2} - 6x - 9 = 0 $ .
So, the correct answer is “ $ 8{x^2} + 9{y^2} - 6x - 9 = 0 $ .”.
Note: Polar form of an equation is represented by $ r(\cos \theta ,\sin \theta ) $ .
Rectangular form is written in the cartesian format, in point form that can be graphed on the cartesian plane.
Relation between Polar and Cartesian values: $ r = \sqrt {{x^2} + {y^2}} $ , $ \cos \theta = \dfrac{x}{r} = \dfrac{x}{{\sqrt {{x^2} + {y^2}} }} $ and $ \sin \theta = \dfrac{y}{r} = \dfrac{y}{{\sqrt {{x^2} + {y^2}} }} $ .
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

