
How do you convert $\left( -4,3 \right)$ into polar coordinates?
Answer
547.5k+ views
Hint: In this question we have to convert the given Cartesian coordinates to the polar coordinates. We will convert the Cartesian coordinates $\left( x,y \right)$ to polar coordinates $\left( r,\theta \right)$ of a point using the following relation
$r=\sqrt{{{x}^{2}}+{{y}^{2}}}$
$\theta =atan2\left( y,x \right)$
Complete step-by-step answer:
We have been given a Cartesian coordinates $\left( -4,3 \right)$.
We have to convert the given Cartesian coordinates to polar coordinates.
In order to convert first of all we will find $r$ as the distance between origin and the Cartesian point as $r=\sqrt{{{x}^{2}}+{{y}^{2}}}$ where $\left( x,y \right)$ are Cartesian coordinates and $\theta $ is the angle the ray joining the origin and the point makes with positive x-axis.
$\theta =atan2\left( y,x \right)$
Here the function $atan2\left( y,x \right)$ called 2-argument inverse tangent and is defined as
$\theta =\left\{ \begin{align}
& {{\tan }^{-1}}\left( \dfrac{y}{x} \right)\text{ if }x>0 \\
& {{\tan }^{-1}}\left( \dfrac{y}{x} \right)\text{+}\pi \text{ if }x<0\text{ and y}\ge 0 \\
& {{\tan }^{-1}}\left( \dfrac{y}{x} \right)-\pi \text{ if }x<0\text{ and y}<0 \\
& \dfrac{\pi }{2}\text{ if }x=0\text{ and y}>0 \\
& -\dfrac{\pi }{2}\text{ if }x=0\text{ and y}>0 \\
& undefined\text{ if }x=0\text{ and y=}0 \\
\end{align} \right\}$
We have given the Cartesian coordinates $\left( x,y \right)=\left( -4,3 \right)$.
Now, we can find the value of r by using the relation $r=\sqrt{{{x}^{2}}+{{y}^{2}}}$
Now, substituting the values we will get
$\Rightarrow r=\sqrt{{{\left( -4 \right)}^{2}}+{{\left( 3 \right)}^{2}}}$
Simplifying the above obtained equation we will get
$\begin{align}
& \Rightarrow r=\sqrt{16+9} \\
& \Rightarrow r=\sqrt{25} \\
& \Rightarrow r=5 \\
\end{align}$
Now, we can find the value of $\theta $ as $\theta ={{\tan }^{-1}}\left( -\dfrac{3}{4} \right)$
Simplifying the above obtained equation we will get
$\begin{align}
& \Rightarrow \theta =-{{\tan }^{-1}}\left( \dfrac{3}{4} \right) \\
& \Rightarrow \theta =-36.86{}^\circ \\
\end{align}$
Now, adding $180{}^\circ $ to the obtained value we will get
$\begin{align}
& \Rightarrow \theta =-36.86+180{}^\circ \\
& \Rightarrow \theta =143.13{}^\circ \\
\end{align}$
So the polar coordinates are$\left( 5,143.13{}^\circ \right)$.
Hence we get the required polar coordinates as $\left( 5,143.13{}^\circ \right)$.
Note: Here in this question the angle we get is negative and the point lies in the second quadrant so we need to add $180{}^\circ $ to the obtained value of the angle. Also remember that the angle is always measured in degree.
$r=\sqrt{{{x}^{2}}+{{y}^{2}}}$
$\theta =atan2\left( y,x \right)$
Complete step-by-step answer:
We have been given a Cartesian coordinates $\left( -4,3 \right)$.
We have to convert the given Cartesian coordinates to polar coordinates.
In order to convert first of all we will find $r$ as the distance between origin and the Cartesian point as $r=\sqrt{{{x}^{2}}+{{y}^{2}}}$ where $\left( x,y \right)$ are Cartesian coordinates and $\theta $ is the angle the ray joining the origin and the point makes with positive x-axis.
$\theta =atan2\left( y,x \right)$
Here the function $atan2\left( y,x \right)$ called 2-argument inverse tangent and is defined as
$\theta =\left\{ \begin{align}
& {{\tan }^{-1}}\left( \dfrac{y}{x} \right)\text{ if }x>0 \\
& {{\tan }^{-1}}\left( \dfrac{y}{x} \right)\text{+}\pi \text{ if }x<0\text{ and y}\ge 0 \\
& {{\tan }^{-1}}\left( \dfrac{y}{x} \right)-\pi \text{ if }x<0\text{ and y}<0 \\
& \dfrac{\pi }{2}\text{ if }x=0\text{ and y}>0 \\
& -\dfrac{\pi }{2}\text{ if }x=0\text{ and y}>0 \\
& undefined\text{ if }x=0\text{ and y=}0 \\
\end{align} \right\}$
We have given the Cartesian coordinates $\left( x,y \right)=\left( -4,3 \right)$.
Now, we can find the value of r by using the relation $r=\sqrt{{{x}^{2}}+{{y}^{2}}}$
Now, substituting the values we will get
$\Rightarrow r=\sqrt{{{\left( -4 \right)}^{2}}+{{\left( 3 \right)}^{2}}}$
Simplifying the above obtained equation we will get
$\begin{align}
& \Rightarrow r=\sqrt{16+9} \\
& \Rightarrow r=\sqrt{25} \\
& \Rightarrow r=5 \\
\end{align}$
Now, we can find the value of $\theta $ as $\theta ={{\tan }^{-1}}\left( -\dfrac{3}{4} \right)$
Simplifying the above obtained equation we will get
$\begin{align}
& \Rightarrow \theta =-{{\tan }^{-1}}\left( \dfrac{3}{4} \right) \\
& \Rightarrow \theta =-36.86{}^\circ \\
\end{align}$
Now, adding $180{}^\circ $ to the obtained value we will get
$\begin{align}
& \Rightarrow \theta =-36.86+180{}^\circ \\
& \Rightarrow \theta =143.13{}^\circ \\
\end{align}$
So the polar coordinates are$\left( 5,143.13{}^\circ \right)$.
Hence we get the required polar coordinates as $\left( 5,143.13{}^\circ \right)$.
Note: Here in this question the angle we get is negative and the point lies in the second quadrant so we need to add $180{}^\circ $ to the obtained value of the angle. Also remember that the angle is always measured in degree.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

