
Convert into polar form \[z = \dfrac{{i - 1}}{{\cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3}}}\].
Answer
590.1k+ views
Hint: First we will first use the value of \[\pi \] in the given equation to simplify the given equation by rationalizing it. Then compare the real and imaginary values of the obtained equation the polar form of \[z = r\cos \theta + i\sin \theta \] to find the required values.
Complete step by step solution: We are given that \[z = \dfrac{{i - 1}}{{\cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3}}}\].
Using the value of \[\pi \] in the above equation, we get
\[
\Rightarrow z = \dfrac{{i - 1}}{{\cos \left( {\dfrac{{180}}{3}} \right) + i\sin \left( {\dfrac{{180}}{3}} \right)}} \\
\Rightarrow z = \dfrac{{i - 1}}{{\cos 60^\circ + i\sin 60^\circ }} \\
\Rightarrow z = \dfrac{{i - 1}}{{\dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}}} \\
\Rightarrow z = \dfrac{{i - 1}}{{\dfrac{{1 + i\sqrt 3 }}{2}}} \\
\Rightarrow z = \dfrac{{2\left( {i - 1} \right)}}{{1 + \sqrt 3 i}} \\
\]
Rationalizing the above equation by multiplying the numerator and denominator with \[1 - \sqrt 3 i\], we get
\[
\Rightarrow z = \dfrac{{2\left( {i - 1} \right) \times \left( {1 - \sqrt 3 i} \right)}}{{\left( {1 + \sqrt 3 i} \right) \times \left( {1 - \sqrt 3 i} \right)}} \\
\Rightarrow z = \dfrac{{2\left( {i - 1} \right) \times \left( {1 - \sqrt 3 i} \right)}}{{{1^2} - {{\left( {\sqrt 3 i} \right)}^2}}} \\
\Rightarrow z = \dfrac{{2\left[ { - 1 + i + \sqrt 3 i - \sqrt 3 i\left( {{i^2}} \right)} \right]}}{{{1^2} - 3{i^2}}} \\
\]
Putting \[{i^2} = - 1\] in the above equation, we get
\[
\Rightarrow z = \dfrac{{2\left[ { - 1 + i + \sqrt 3 i - \sqrt 3 \left( { - 1} \right)} \right]}}{{1 - 3\left( { - 1} \right)}} \\
\Rightarrow z = \dfrac{{2\left[ { - 1 + i + \sqrt 3 i + \sqrt 3 } \right]}}{{1 + 3}} \\
\Rightarrow z = \dfrac{{2\left[ { - 1 + i + \sqrt 3 i + \sqrt 3 } \right]}}{4} \\
\Rightarrow z = \dfrac{{\left[ { - 1 + i + \sqrt 3 i + \sqrt 3 } \right]}}{2} \\
\Rightarrow z = \dfrac{{\sqrt 3 - 1}}{2} + i\dfrac{{\sqrt 3 + 1}}{2}{\text{ .......eq.(1)}} \\
\]
Let us assume that the polar form be
\[z = r\left( {\cos \theta + i\sin \theta } \right){\text{ ......eq.(2)}}\]
From equation (1) and equation (2), we get
\[
\Rightarrow \dfrac{{\sqrt 3 - 1}}{2} + i\dfrac{{\sqrt 3 + 1}}{2} = r\left( {\cos \theta + i\sin \theta } \right) \\
\Rightarrow \dfrac{{\sqrt 3 - 1}}{2} + i\dfrac{{\sqrt 3 + 1}}{2} = r\cos \theta + ir\sin \theta {\text{ ......eq.(3)}} \\
\]
Comparing the real parts in the above equation (3), we get
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{2} = r\cos \theta \]
Squaring the above equation on both sides, we get
\[
\Rightarrow {\left( {\dfrac{{\sqrt 3 - 1}}{2}} \right)^2} = {\left( {r\cos \theta } \right)^2} \\
\Rightarrow \dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{{2^2}}} = {r^2}{\cos ^2}\theta \\
\Rightarrow \dfrac{{{{\left( {\sqrt 3 } \right)}^2} + 1 - 2\sqrt 3 }}{4} = {r^2}{\cos ^2}\theta \\
\Rightarrow \dfrac{{3 + 1 - 2\sqrt 3 }}{4} = {r^2}{\cos ^2}\theta \\
\Rightarrow \dfrac{{4 - 2\sqrt 3 }}{4} = {r^2}{\cos ^2}\theta {\text{ ......eq.(4)}} \\
\]
Comparing the imaginary parts in the equation (3), we get
\[ \Rightarrow \dfrac{{\sqrt 3 + 1}}{2} = r\sin \theta \]
Squaring the above equation on both sides, we get
\[
\Rightarrow {\left( {\dfrac{{\sqrt 3 + 1}}{2}} \right)^2} = {\left( {r\sin \theta } \right)^2} \\
\Rightarrow \dfrac{{{{\left( {\sqrt 3 + 1} \right)}^2}}}{{{2^2}}} = {r^2}{\sin ^2}\theta \\
\Rightarrow \dfrac{{{{\left( {\sqrt 3 } \right)}^2} + 1 + 2\sqrt 3 }}{4} = {r^2}{\sin ^2}\theta \\
\Rightarrow \dfrac{{3 + 1 + 2\sqrt 3 }}{4} = {r^2}{\sin ^2}\theta \\
\Rightarrow \dfrac{{4 + 2\sqrt 3 }}{4} = {r^2}{\sin ^2}\theta {\text{ .......eq.(5)}} \\
\]
Adding the equation (3) and (4), we get
\[
\Rightarrow \dfrac{{4 - 2\sqrt 3 }}{4} + \dfrac{{4 + 2\sqrt 3 }}{4} = {r^2}{\cos ^2}\theta + {r^2}{\sin ^2}\theta \\
\Rightarrow \dfrac{{4 - 2\sqrt 3 + 4 + 2\sqrt 3 }}{4} = {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) \\
\Rightarrow \dfrac{8}{4} = {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) \\
\Rightarrow 2 = {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) \\
\]
Using \[{\cos ^2}\theta + {\sin ^2}\theta = 1\] in the above equation, we get
\[
\Rightarrow 2 = {r^2}\left( 1 \right) \\
\Rightarrow 2 = {r^2} \\
\]
Taking square root on both sides in the above equation, we get
\[
\Rightarrow \sqrt 2 = r \\
\Rightarrow r = \sqrt 2 \\
\]
Substituting the value of \[r\] in the equation (3), we get
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{2} + i\dfrac{{\sqrt 3 + 1}}{2} = \sqrt 2 \cos \theta + \sqrt 2 i\sin \theta \]
Dividing the above equation by \[\sqrt 2 \] on both sides, we get
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} + i\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} = \cos \theta + i\sin \theta {\text{ .......eq.(6)}}\]
Comparing the real parts in the above equation (6), we get
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} = \cos \theta \]
Comparing the imaginary parts in the equation (6), we get
\[ \Rightarrow \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} = \sin \theta \]
Thus, the polar form is \[z = \sqrt 2 \left( {\cos \dfrac{{5\pi }}{{12}} + i\sin \dfrac{{5\pi }}{{12}}} \right)\].
Note: In solving these types of questions, students should know the standard form of the polar form of the equation is \[z = r\cos \theta + i\sin \theta \]. Whenever we have asked to convert the complex number to polar coordinates, we try to convert in \[z = r\cos \theta + i\sin \theta \] form.
Complete step by step solution: We are given that \[z = \dfrac{{i - 1}}{{\cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3}}}\].
Using the value of \[\pi \] in the above equation, we get
\[
\Rightarrow z = \dfrac{{i - 1}}{{\cos \left( {\dfrac{{180}}{3}} \right) + i\sin \left( {\dfrac{{180}}{3}} \right)}} \\
\Rightarrow z = \dfrac{{i - 1}}{{\cos 60^\circ + i\sin 60^\circ }} \\
\Rightarrow z = \dfrac{{i - 1}}{{\dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}}} \\
\Rightarrow z = \dfrac{{i - 1}}{{\dfrac{{1 + i\sqrt 3 }}{2}}} \\
\Rightarrow z = \dfrac{{2\left( {i - 1} \right)}}{{1 + \sqrt 3 i}} \\
\]
Rationalizing the above equation by multiplying the numerator and denominator with \[1 - \sqrt 3 i\], we get
\[
\Rightarrow z = \dfrac{{2\left( {i - 1} \right) \times \left( {1 - \sqrt 3 i} \right)}}{{\left( {1 + \sqrt 3 i} \right) \times \left( {1 - \sqrt 3 i} \right)}} \\
\Rightarrow z = \dfrac{{2\left( {i - 1} \right) \times \left( {1 - \sqrt 3 i} \right)}}{{{1^2} - {{\left( {\sqrt 3 i} \right)}^2}}} \\
\Rightarrow z = \dfrac{{2\left[ { - 1 + i + \sqrt 3 i - \sqrt 3 i\left( {{i^2}} \right)} \right]}}{{{1^2} - 3{i^2}}} \\
\]
Putting \[{i^2} = - 1\] in the above equation, we get
\[
\Rightarrow z = \dfrac{{2\left[ { - 1 + i + \sqrt 3 i - \sqrt 3 \left( { - 1} \right)} \right]}}{{1 - 3\left( { - 1} \right)}} \\
\Rightarrow z = \dfrac{{2\left[ { - 1 + i + \sqrt 3 i + \sqrt 3 } \right]}}{{1 + 3}} \\
\Rightarrow z = \dfrac{{2\left[ { - 1 + i + \sqrt 3 i + \sqrt 3 } \right]}}{4} \\
\Rightarrow z = \dfrac{{\left[ { - 1 + i + \sqrt 3 i + \sqrt 3 } \right]}}{2} \\
\Rightarrow z = \dfrac{{\sqrt 3 - 1}}{2} + i\dfrac{{\sqrt 3 + 1}}{2}{\text{ .......eq.(1)}} \\
\]
Let us assume that the polar form be
\[z = r\left( {\cos \theta + i\sin \theta } \right){\text{ ......eq.(2)}}\]
From equation (1) and equation (2), we get
\[
\Rightarrow \dfrac{{\sqrt 3 - 1}}{2} + i\dfrac{{\sqrt 3 + 1}}{2} = r\left( {\cos \theta + i\sin \theta } \right) \\
\Rightarrow \dfrac{{\sqrt 3 - 1}}{2} + i\dfrac{{\sqrt 3 + 1}}{2} = r\cos \theta + ir\sin \theta {\text{ ......eq.(3)}} \\
\]
Comparing the real parts in the above equation (3), we get
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{2} = r\cos \theta \]
Squaring the above equation on both sides, we get
\[
\Rightarrow {\left( {\dfrac{{\sqrt 3 - 1}}{2}} \right)^2} = {\left( {r\cos \theta } \right)^2} \\
\Rightarrow \dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{{2^2}}} = {r^2}{\cos ^2}\theta \\
\Rightarrow \dfrac{{{{\left( {\sqrt 3 } \right)}^2} + 1 - 2\sqrt 3 }}{4} = {r^2}{\cos ^2}\theta \\
\Rightarrow \dfrac{{3 + 1 - 2\sqrt 3 }}{4} = {r^2}{\cos ^2}\theta \\
\Rightarrow \dfrac{{4 - 2\sqrt 3 }}{4} = {r^2}{\cos ^2}\theta {\text{ ......eq.(4)}} \\
\]
Comparing the imaginary parts in the equation (3), we get
\[ \Rightarrow \dfrac{{\sqrt 3 + 1}}{2} = r\sin \theta \]
Squaring the above equation on both sides, we get
\[
\Rightarrow {\left( {\dfrac{{\sqrt 3 + 1}}{2}} \right)^2} = {\left( {r\sin \theta } \right)^2} \\
\Rightarrow \dfrac{{{{\left( {\sqrt 3 + 1} \right)}^2}}}{{{2^2}}} = {r^2}{\sin ^2}\theta \\
\Rightarrow \dfrac{{{{\left( {\sqrt 3 } \right)}^2} + 1 + 2\sqrt 3 }}{4} = {r^2}{\sin ^2}\theta \\
\Rightarrow \dfrac{{3 + 1 + 2\sqrt 3 }}{4} = {r^2}{\sin ^2}\theta \\
\Rightarrow \dfrac{{4 + 2\sqrt 3 }}{4} = {r^2}{\sin ^2}\theta {\text{ .......eq.(5)}} \\
\]
Adding the equation (3) and (4), we get
\[
\Rightarrow \dfrac{{4 - 2\sqrt 3 }}{4} + \dfrac{{4 + 2\sqrt 3 }}{4} = {r^2}{\cos ^2}\theta + {r^2}{\sin ^2}\theta \\
\Rightarrow \dfrac{{4 - 2\sqrt 3 + 4 + 2\sqrt 3 }}{4} = {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) \\
\Rightarrow \dfrac{8}{4} = {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) \\
\Rightarrow 2 = {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) \\
\]
Using \[{\cos ^2}\theta + {\sin ^2}\theta = 1\] in the above equation, we get
\[
\Rightarrow 2 = {r^2}\left( 1 \right) \\
\Rightarrow 2 = {r^2} \\
\]
Taking square root on both sides in the above equation, we get
\[
\Rightarrow \sqrt 2 = r \\
\Rightarrow r = \sqrt 2 \\
\]
Substituting the value of \[r\] in the equation (3), we get
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{2} + i\dfrac{{\sqrt 3 + 1}}{2} = \sqrt 2 \cos \theta + \sqrt 2 i\sin \theta \]
Dividing the above equation by \[\sqrt 2 \] on both sides, we get
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} + i\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} = \cos \theta + i\sin \theta {\text{ .......eq.(6)}}\]
Comparing the real parts in the above equation (6), we get
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} = \cos \theta \]
Comparing the imaginary parts in the equation (6), we get
\[ \Rightarrow \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} = \sin \theta \]
Thus, the polar form is \[z = \sqrt 2 \left( {\cos \dfrac{{5\pi }}{{12}} + i\sin \dfrac{{5\pi }}{{12}}} \right)\].
Note: In solving these types of questions, students should know the standard form of the polar form of the equation is \[z = r\cos \theta + i\sin \theta \]. Whenever we have asked to convert the complex number to polar coordinates, we try to convert in \[z = r\cos \theta + i\sin \theta \] form.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

Calculate the equivalent resistance between a and b class 12 physics CBSE

How many states of matter are there in total class 12 chemistry CBSE

Which of the following is the best conductor of electricity class 12 physics CBSE

