
Convert into polar form \[z = \dfrac{{i - 1}}{{\cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3}}}\].
Answer
511.2k+ views
Hint: First we will first use the value of \[\pi \] in the given equation to simplify the given equation by rationalizing it. Then compare the real and imaginary values of the obtained equation the polar form of \[z = r\cos \theta + i\sin \theta \] to find the required values.
Complete step by step solution: We are given that \[z = \dfrac{{i - 1}}{{\cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3}}}\].
Using the value of \[\pi \] in the above equation, we get
\[
\Rightarrow z = \dfrac{{i - 1}}{{\cos \left( {\dfrac{{180}}{3}} \right) + i\sin \left( {\dfrac{{180}}{3}} \right)}} \\
\Rightarrow z = \dfrac{{i - 1}}{{\cos 60^\circ + i\sin 60^\circ }} \\
\Rightarrow z = \dfrac{{i - 1}}{{\dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}}} \\
\Rightarrow z = \dfrac{{i - 1}}{{\dfrac{{1 + i\sqrt 3 }}{2}}} \\
\Rightarrow z = \dfrac{{2\left( {i - 1} \right)}}{{1 + \sqrt 3 i}} \\
\]
Rationalizing the above equation by multiplying the numerator and denominator with \[1 - \sqrt 3 i\], we get
\[
\Rightarrow z = \dfrac{{2\left( {i - 1} \right) \times \left( {1 - \sqrt 3 i} \right)}}{{\left( {1 + \sqrt 3 i} \right) \times \left( {1 - \sqrt 3 i} \right)}} \\
\Rightarrow z = \dfrac{{2\left( {i - 1} \right) \times \left( {1 - \sqrt 3 i} \right)}}{{{1^2} - {{\left( {\sqrt 3 i} \right)}^2}}} \\
\Rightarrow z = \dfrac{{2\left[ { - 1 + i + \sqrt 3 i - \sqrt 3 i\left( {{i^2}} \right)} \right]}}{{{1^2} - 3{i^2}}} \\
\]
Putting \[{i^2} = - 1\] in the above equation, we get
\[
\Rightarrow z = \dfrac{{2\left[ { - 1 + i + \sqrt 3 i - \sqrt 3 \left( { - 1} \right)} \right]}}{{1 - 3\left( { - 1} \right)}} \\
\Rightarrow z = \dfrac{{2\left[ { - 1 + i + \sqrt 3 i + \sqrt 3 } \right]}}{{1 + 3}} \\
\Rightarrow z = \dfrac{{2\left[ { - 1 + i + \sqrt 3 i + \sqrt 3 } \right]}}{4} \\
\Rightarrow z = \dfrac{{\left[ { - 1 + i + \sqrt 3 i + \sqrt 3 } \right]}}{2} \\
\Rightarrow z = \dfrac{{\sqrt 3 - 1}}{2} + i\dfrac{{\sqrt 3 + 1}}{2}{\text{ .......eq.(1)}} \\
\]
Let us assume that the polar form be
\[z = r\left( {\cos \theta + i\sin \theta } \right){\text{ ......eq.(2)}}\]
From equation (1) and equation (2), we get
\[
\Rightarrow \dfrac{{\sqrt 3 - 1}}{2} + i\dfrac{{\sqrt 3 + 1}}{2} = r\left( {\cos \theta + i\sin \theta } \right) \\
\Rightarrow \dfrac{{\sqrt 3 - 1}}{2} + i\dfrac{{\sqrt 3 + 1}}{2} = r\cos \theta + ir\sin \theta {\text{ ......eq.(3)}} \\
\]
Comparing the real parts in the above equation (3), we get
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{2} = r\cos \theta \]
Squaring the above equation on both sides, we get
\[
\Rightarrow {\left( {\dfrac{{\sqrt 3 - 1}}{2}} \right)^2} = {\left( {r\cos \theta } \right)^2} \\
\Rightarrow \dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{{2^2}}} = {r^2}{\cos ^2}\theta \\
\Rightarrow \dfrac{{{{\left( {\sqrt 3 } \right)}^2} + 1 - 2\sqrt 3 }}{4} = {r^2}{\cos ^2}\theta \\
\Rightarrow \dfrac{{3 + 1 - 2\sqrt 3 }}{4} = {r^2}{\cos ^2}\theta \\
\Rightarrow \dfrac{{4 - 2\sqrt 3 }}{4} = {r^2}{\cos ^2}\theta {\text{ ......eq.(4)}} \\
\]
Comparing the imaginary parts in the equation (3), we get
\[ \Rightarrow \dfrac{{\sqrt 3 + 1}}{2} = r\sin \theta \]
Squaring the above equation on both sides, we get
\[
\Rightarrow {\left( {\dfrac{{\sqrt 3 + 1}}{2}} \right)^2} = {\left( {r\sin \theta } \right)^2} \\
\Rightarrow \dfrac{{{{\left( {\sqrt 3 + 1} \right)}^2}}}{{{2^2}}} = {r^2}{\sin ^2}\theta \\
\Rightarrow \dfrac{{{{\left( {\sqrt 3 } \right)}^2} + 1 + 2\sqrt 3 }}{4} = {r^2}{\sin ^2}\theta \\
\Rightarrow \dfrac{{3 + 1 + 2\sqrt 3 }}{4} = {r^2}{\sin ^2}\theta \\
\Rightarrow \dfrac{{4 + 2\sqrt 3 }}{4} = {r^2}{\sin ^2}\theta {\text{ .......eq.(5)}} \\
\]
Adding the equation (3) and (4), we get
\[
\Rightarrow \dfrac{{4 - 2\sqrt 3 }}{4} + \dfrac{{4 + 2\sqrt 3 }}{4} = {r^2}{\cos ^2}\theta + {r^2}{\sin ^2}\theta \\
\Rightarrow \dfrac{{4 - 2\sqrt 3 + 4 + 2\sqrt 3 }}{4} = {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) \\
\Rightarrow \dfrac{8}{4} = {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) \\
\Rightarrow 2 = {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) \\
\]
Using \[{\cos ^2}\theta + {\sin ^2}\theta = 1\] in the above equation, we get
\[
\Rightarrow 2 = {r^2}\left( 1 \right) \\
\Rightarrow 2 = {r^2} \\
\]
Taking square root on both sides in the above equation, we get
\[
\Rightarrow \sqrt 2 = r \\
\Rightarrow r = \sqrt 2 \\
\]
Substituting the value of \[r\] in the equation (3), we get
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{2} + i\dfrac{{\sqrt 3 + 1}}{2} = \sqrt 2 \cos \theta + \sqrt 2 i\sin \theta \]
Dividing the above equation by \[\sqrt 2 \] on both sides, we get
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} + i\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} = \cos \theta + i\sin \theta {\text{ .......eq.(6)}}\]
Comparing the real parts in the above equation (6), we get
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} = \cos \theta \]
Comparing the imaginary parts in the equation (6), we get
\[ \Rightarrow \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} = \sin \theta \]
Thus, the polar form is \[z = \sqrt 2 \left( {\cos \dfrac{{5\pi }}{{12}} + i\sin \dfrac{{5\pi }}{{12}}} \right)\].
Note: In solving these types of questions, students should know the standard form of the polar form of the equation is \[z = r\cos \theta + i\sin \theta \]. Whenever we have asked to convert the complex number to polar coordinates, we try to convert in \[z = r\cos \theta + i\sin \theta \] form.
Complete step by step solution: We are given that \[z = \dfrac{{i - 1}}{{\cos \dfrac{\pi }{3} + i\sin \dfrac{\pi }{3}}}\].
Using the value of \[\pi \] in the above equation, we get
\[
\Rightarrow z = \dfrac{{i - 1}}{{\cos \left( {\dfrac{{180}}{3}} \right) + i\sin \left( {\dfrac{{180}}{3}} \right)}} \\
\Rightarrow z = \dfrac{{i - 1}}{{\cos 60^\circ + i\sin 60^\circ }} \\
\Rightarrow z = \dfrac{{i - 1}}{{\dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}}} \\
\Rightarrow z = \dfrac{{i - 1}}{{\dfrac{{1 + i\sqrt 3 }}{2}}} \\
\Rightarrow z = \dfrac{{2\left( {i - 1} \right)}}{{1 + \sqrt 3 i}} \\
\]
Rationalizing the above equation by multiplying the numerator and denominator with \[1 - \sqrt 3 i\], we get
\[
\Rightarrow z = \dfrac{{2\left( {i - 1} \right) \times \left( {1 - \sqrt 3 i} \right)}}{{\left( {1 + \sqrt 3 i} \right) \times \left( {1 - \sqrt 3 i} \right)}} \\
\Rightarrow z = \dfrac{{2\left( {i - 1} \right) \times \left( {1 - \sqrt 3 i} \right)}}{{{1^2} - {{\left( {\sqrt 3 i} \right)}^2}}} \\
\Rightarrow z = \dfrac{{2\left[ { - 1 + i + \sqrt 3 i - \sqrt 3 i\left( {{i^2}} \right)} \right]}}{{{1^2} - 3{i^2}}} \\
\]
Putting \[{i^2} = - 1\] in the above equation, we get
\[
\Rightarrow z = \dfrac{{2\left[ { - 1 + i + \sqrt 3 i - \sqrt 3 \left( { - 1} \right)} \right]}}{{1 - 3\left( { - 1} \right)}} \\
\Rightarrow z = \dfrac{{2\left[ { - 1 + i + \sqrt 3 i + \sqrt 3 } \right]}}{{1 + 3}} \\
\Rightarrow z = \dfrac{{2\left[ { - 1 + i + \sqrt 3 i + \sqrt 3 } \right]}}{4} \\
\Rightarrow z = \dfrac{{\left[ { - 1 + i + \sqrt 3 i + \sqrt 3 } \right]}}{2} \\
\Rightarrow z = \dfrac{{\sqrt 3 - 1}}{2} + i\dfrac{{\sqrt 3 + 1}}{2}{\text{ .......eq.(1)}} \\
\]
Let us assume that the polar form be
\[z = r\left( {\cos \theta + i\sin \theta } \right){\text{ ......eq.(2)}}\]
From equation (1) and equation (2), we get
\[
\Rightarrow \dfrac{{\sqrt 3 - 1}}{2} + i\dfrac{{\sqrt 3 + 1}}{2} = r\left( {\cos \theta + i\sin \theta } \right) \\
\Rightarrow \dfrac{{\sqrt 3 - 1}}{2} + i\dfrac{{\sqrt 3 + 1}}{2} = r\cos \theta + ir\sin \theta {\text{ ......eq.(3)}} \\
\]
Comparing the real parts in the above equation (3), we get
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{2} = r\cos \theta \]
Squaring the above equation on both sides, we get
\[
\Rightarrow {\left( {\dfrac{{\sqrt 3 - 1}}{2}} \right)^2} = {\left( {r\cos \theta } \right)^2} \\
\Rightarrow \dfrac{{{{\left( {\sqrt 3 - 1} \right)}^2}}}{{{2^2}}} = {r^2}{\cos ^2}\theta \\
\Rightarrow \dfrac{{{{\left( {\sqrt 3 } \right)}^2} + 1 - 2\sqrt 3 }}{4} = {r^2}{\cos ^2}\theta \\
\Rightarrow \dfrac{{3 + 1 - 2\sqrt 3 }}{4} = {r^2}{\cos ^2}\theta \\
\Rightarrow \dfrac{{4 - 2\sqrt 3 }}{4} = {r^2}{\cos ^2}\theta {\text{ ......eq.(4)}} \\
\]
Comparing the imaginary parts in the equation (3), we get
\[ \Rightarrow \dfrac{{\sqrt 3 + 1}}{2} = r\sin \theta \]
Squaring the above equation on both sides, we get
\[
\Rightarrow {\left( {\dfrac{{\sqrt 3 + 1}}{2}} \right)^2} = {\left( {r\sin \theta } \right)^2} \\
\Rightarrow \dfrac{{{{\left( {\sqrt 3 + 1} \right)}^2}}}{{{2^2}}} = {r^2}{\sin ^2}\theta \\
\Rightarrow \dfrac{{{{\left( {\sqrt 3 } \right)}^2} + 1 + 2\sqrt 3 }}{4} = {r^2}{\sin ^2}\theta \\
\Rightarrow \dfrac{{3 + 1 + 2\sqrt 3 }}{4} = {r^2}{\sin ^2}\theta \\
\Rightarrow \dfrac{{4 + 2\sqrt 3 }}{4} = {r^2}{\sin ^2}\theta {\text{ .......eq.(5)}} \\
\]
Adding the equation (3) and (4), we get
\[
\Rightarrow \dfrac{{4 - 2\sqrt 3 }}{4} + \dfrac{{4 + 2\sqrt 3 }}{4} = {r^2}{\cos ^2}\theta + {r^2}{\sin ^2}\theta \\
\Rightarrow \dfrac{{4 - 2\sqrt 3 + 4 + 2\sqrt 3 }}{4} = {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) \\
\Rightarrow \dfrac{8}{4} = {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) \\
\Rightarrow 2 = {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) \\
\]
Using \[{\cos ^2}\theta + {\sin ^2}\theta = 1\] in the above equation, we get
\[
\Rightarrow 2 = {r^2}\left( 1 \right) \\
\Rightarrow 2 = {r^2} \\
\]
Taking square root on both sides in the above equation, we get
\[
\Rightarrow \sqrt 2 = r \\
\Rightarrow r = \sqrt 2 \\
\]
Substituting the value of \[r\] in the equation (3), we get
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{2} + i\dfrac{{\sqrt 3 + 1}}{2} = \sqrt 2 \cos \theta + \sqrt 2 i\sin \theta \]
Dividing the above equation by \[\sqrt 2 \] on both sides, we get
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} + i\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} = \cos \theta + i\sin \theta {\text{ .......eq.(6)}}\]
Comparing the real parts in the above equation (6), we get
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} = \cos \theta \]
Comparing the imaginary parts in the equation (6), we get
\[ \Rightarrow \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} = \sin \theta \]
Thus, the polar form is \[z = \sqrt 2 \left( {\cos \dfrac{{5\pi }}{{12}} + i\sin \dfrac{{5\pi }}{{12}}} \right)\].
Note: In solving these types of questions, students should know the standard form of the polar form of the equation is \[z = r\cos \theta + i\sin \theta \]. Whenever we have asked to convert the complex number to polar coordinates, we try to convert in \[z = r\cos \theta + i\sin \theta \] form.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
