
How do you convert $ - 40 $ degrees into radians?
Answer
539.7k+ views
Hint: Degree and radians are two separate units which are used as units for the measurement of angles. A degree is a unit to measure angle. A degree is usually denoted as $ ^ \circ $ . One degree is equal to $ \dfrac{\pi }{{180}} $ radians which approximately equals to $ 0.01746 $ radians. In order to convert any given angle from a measure of its degrees to radian, we have to multiply the value by $ \dfrac{\pi }{{180}} $ . A radian is the angle made at the center of the circle by an arc equal in length to the radius. One radian equals to $ \dfrac{{180}}{\pi } $ degrees which approximately equals to $ {57^ \circ }16' $ . In order to convert any given angle from the measure of its radians to degrees, all we are needed to do is multiply the value by $ \dfrac{{180}}{\pi } $ .
Complete step-by-step answer:
We know that a circle subtends at the center an angle whose radian measure is $ 2\pi $ whereas its degree measure is $ 360 $ , it follows that
$
2\pi \;radian = {360^ \circ } \\
\pi \;radian = {180^ \circ } \;
$
In order to convert a degree into radian, we need to multiply the given degree by $ \dfrac{\pi }{{180}} $ .
$
\Rightarrow - {40^ \circ } \times \dfrac{\pi }{{{{180}^ \circ }}} \\
\Rightarrow - 0.22222\pi \;rad \\
\Rightarrow - 0.698\;rad \;
$
So, the correct answer is “ 0.698 RAD”.
Note: To convert degree into radian we are required to multiply the degree by $ \dfrac{\pi }{{180}} $ . This is usually confused by students with $ \dfrac{{180}}{\pi } $ which is the formula used when we are required to convert radians into degrees. A circle has \[{360^ \circ }\] degree or \[2\pi \] radians. Radians have useful properties in calculus under this we define trigonometric functions with radians as its units they can easily be derived while degrees don’t have such useful properties but helps in divisibility.
Complete step-by-step answer:
We know that a circle subtends at the center an angle whose radian measure is $ 2\pi $ whereas its degree measure is $ 360 $ , it follows that
$
2\pi \;radian = {360^ \circ } \\
\pi \;radian = {180^ \circ } \;
$
In order to convert a degree into radian, we need to multiply the given degree by $ \dfrac{\pi }{{180}} $ .
$
\Rightarrow - {40^ \circ } \times \dfrac{\pi }{{{{180}^ \circ }}} \\
\Rightarrow - 0.22222\pi \;rad \\
\Rightarrow - 0.698\;rad \;
$
So, the correct answer is “ 0.698 RAD”.
Note: To convert degree into radian we are required to multiply the degree by $ \dfrac{\pi }{{180}} $ . This is usually confused by students with $ \dfrac{{180}}{\pi } $ which is the formula used when we are required to convert radians into degrees. A circle has \[{360^ \circ }\] degree or \[2\pi \] radians. Radians have useful properties in calculus under this we define trigonometric functions with radians as its units they can easily be derived while degrees don’t have such useful properties but helps in divisibility.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

