
Construct 3 equations starting with x = -2.
Answer
606k+ views
Hint: To get the equations starting from x = -2, multiply, divide, subtract or add common entities to both sides of x = -2, like add 5 on both sides to get the equation x + 5 = 3 and so on.
Complete step-by-step answer:
Here we have to construct 3 equations starting from x = -2. Before proceeding with this question, we must know what an equation is. In algebra, an equation can be defined as a mathematical statement consisting of an equal symbol between two algebraic expressions that have the same value. For example, 3x = 4 is an equation, in which 3x and 4 are two expressions separated by an ‘equal’ sign. An equation can have one or more variables.
Now, we take our given equation that is,
\[x=-2....\left( i \right)\]
Now, we have to construct 3 equations starting from the above equation such that the value of x remains -2.
We know that by adding common value to both RHS and LHS in the equation, the value of the variable remains constant. So, now we add 8 to both sides of equation (i), we get
\[\Rightarrow x+8=-2+8\]
\[\Rightarrow x+8=6\]
Therefore, we get the first equation as x + 8 = 6.
We know that by multiplication common values with both RHS and LHS in the equation, the value of the variable remains constant.
So, now we multiply 7 on both sides of equation (i), we get,
\[\Rightarrow 7x=7\times \left( -2 \right)\]
\[\Rightarrow 7x=-14\]
Therefore, we get the second equation as 7x = -14.
We know that by dividing common value with both RHS and LHS in the equation, the value of variables remains constant.
So, now we divide 2 with both sides of equation (i), we get,
\[\Rightarrow \dfrac{x}{2}=\dfrac{-2}{2}\]
\[\Rightarrow \dfrac{x}{2}=-1\]
Therefore, we get the third equation as \[\dfrac{x}{2}=-1\].
Therefore, we get 3 equations starting from x = -2 are,
1. \[x+8=6\]
2. \[7x=-14\]
3. \[\dfrac{x}{2}=-1\]
Note: Students must note that if we multiply, divide, subtract or add the same quantity with both LHS and RHS of the equation, then that equation remains the same. Also, after getting a new equation, students must cross-check if the value of the variable is same in the new equation or not. For example, if we take equation x + 8 = 6, by subtracting 8 from both sides, we get,
\[x+8-8=6-8\]
\[\Rightarrow x=-2\]
Hence, our equation is correct.
Complete step-by-step answer:
Here we have to construct 3 equations starting from x = -2. Before proceeding with this question, we must know what an equation is. In algebra, an equation can be defined as a mathematical statement consisting of an equal symbol between two algebraic expressions that have the same value. For example, 3x = 4 is an equation, in which 3x and 4 are two expressions separated by an ‘equal’ sign. An equation can have one or more variables.
Now, we take our given equation that is,
\[x=-2....\left( i \right)\]
Now, we have to construct 3 equations starting from the above equation such that the value of x remains -2.
We know that by adding common value to both RHS and LHS in the equation, the value of the variable remains constant. So, now we add 8 to both sides of equation (i), we get
\[\Rightarrow x+8=-2+8\]
\[\Rightarrow x+8=6\]
Therefore, we get the first equation as x + 8 = 6.
We know that by multiplication common values with both RHS and LHS in the equation, the value of the variable remains constant.
So, now we multiply 7 on both sides of equation (i), we get,
\[\Rightarrow 7x=7\times \left( -2 \right)\]
\[\Rightarrow 7x=-14\]
Therefore, we get the second equation as 7x = -14.
We know that by dividing common value with both RHS and LHS in the equation, the value of variables remains constant.
So, now we divide 2 with both sides of equation (i), we get,
\[\Rightarrow \dfrac{x}{2}=\dfrac{-2}{2}\]
\[\Rightarrow \dfrac{x}{2}=-1\]
Therefore, we get the third equation as \[\dfrac{x}{2}=-1\].
Therefore, we get 3 equations starting from x = -2 are,
1. \[x+8=6\]
2. \[7x=-14\]
3. \[\dfrac{x}{2}=-1\]
Note: Students must note that if we multiply, divide, subtract or add the same quantity with both LHS and RHS of the equation, then that equation remains the same. Also, after getting a new equation, students must cross-check if the value of the variable is same in the new equation or not. For example, if we take equation x + 8 = 6, by subtracting 8 from both sides, we get,
\[x+8-8=6-8\]
\[\Rightarrow x=-2\]
Hence, our equation is correct.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Which one of the following groups comprises states class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

A couple went for a picnic They have 5 sons and each class 8 maths CBSE

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

