
Consider two functions given by \[A=\sin \dfrac{2\pi }{7}+\sin \dfrac{4\pi }{7}+\sin \dfrac{8\pi }{7}\] and \[B=\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{8\pi }{7}\] then \[\sqrt{{{A}^{2}}+{{B}^{2}}}\] is equal to
\[\begin{align}
& \text{(A) 1} \\
& \text{(B) }\sqrt{2} \\
& (\text{C) 2} \\
& \text{(D) }\sqrt{3} \\
\end{align}\]
Answer
585.3k+ views
Hint: Let us \[A=\sin \dfrac{2\pi }{7}+\sin \dfrac{4\pi }{7}+\sin \dfrac{8\pi }{7}\] as equation (1). Now let us square the equation (1) on both sides. Now by using the formula \[2\sin C\sin D=\cos \left( \dfrac{C-D}{2} \right)-\cos \left( \dfrac{C+D}{2} \right)\] we should solve the problem. While solving the problem, we should also write \[\cos (\pi +\theta )=-\cos \theta \] and \[\cos (\pi -\theta )=-\cos \theta \]. Let us \[B=\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{8\pi }{7}\] as equation (2). Now let us square the equation (2) on both sides. Now by using the formula \[2\sin C\sin D=\cos \left( \dfrac{C-D}{2} \right)-\cos \left( \dfrac{C+D}{2} \right)\] we should solve the problem. While solving the problem, we should also write \[\cos (\pi +\theta )=-\cos \theta \] and \[\cos (\pi -\theta )=-\cos \theta \]. Now we should add equation (1) and equation (2). Now by using the formula \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\], we can find the value of \[\sqrt{{{A}^{2}}+{{B}^{2}}}\].
Complete step-by-step answer:
From the question, we were given that \[A=\sin \dfrac{2\pi }{7}+\sin \dfrac{4\pi }{7}+\sin \dfrac{8\pi }{7}\].
Let us assume \[A=\sin \dfrac{2\pi }{7}+\sin \dfrac{4\pi }{7}+\sin \dfrac{8\pi }{7}.....(1)\].
We know that \[{{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca\].
Now we squaring on both sides of equation (1).
\[\begin{align}
& {{A}^{2}}={{\left( \sin \dfrac{2\pi }{7}+\sin \dfrac{4\pi }{7}+\sin \dfrac{8\pi }{7} \right)}^{2}} \\
& \Rightarrow {{A}^{2}}={{\sin }^{2}}\dfrac{2\pi }{7}+{{\sin }^{2}}\dfrac{4\pi }{7}+{{\sin }^{2}}\dfrac{8\pi }{7}+2\sin \dfrac{4\pi }{7}\sin \dfrac{2\pi }{7}+2\sin \dfrac{8\pi }{7}\sin \dfrac{4\pi }{7}+2\sin \dfrac{8\pi }{7}\sin \dfrac{2\pi }{7} \\
\end{align}\]
We know that \[2\sin C\sin D=\cos \left( \dfrac{C-D}{2} \right)-\cos \left( \dfrac{C+D}{2} \right)\].
\[\Rightarrow {{A}^{2}}={{\sin }^{2}}\dfrac{2\pi }{7}+{{\sin }^{2}}\dfrac{4\pi }{7}+{{\sin }^{2}}\dfrac{8\pi }{7}+\left( \cos \dfrac{2\pi }{7}-\cos \dfrac{6\pi }{7} \right)+\left( \cos \dfrac{4\pi }{7}-\cos \dfrac{12\pi }{7} \right)+\left( \cos \dfrac{6\pi }{7}-\cos \dfrac{10\pi }{7} \right)\]
Now let us write \[\cos \dfrac{12\pi }{7}=\cos \left( \pi +\dfrac{5\pi }{7} \right)\] and \[\cos \dfrac{10\pi }{7}=\cos \left( \pi +\dfrac{3\pi }{7} \right)\].
\[\Rightarrow {{A}^{2}}={{\sin }^{2}}\dfrac{2\pi }{7}+{{\sin }^{2}}\dfrac{4\pi }{7}+{{\sin }^{2}}\dfrac{8\pi }{7}+\left( \cos \dfrac{2\pi }{7}-\cos \left( \dfrac{6\pi }{7} \right) \right)+\left( \cos \dfrac{4\pi }{7}-\cos \left( \pi +\dfrac{5\pi }{7} \right) \right)+\left( \cos \left( \dfrac{6\pi }{7} \right)-\cos \left( \pi +\dfrac{3\pi }{7} \right) \right)\]
We know that \[\cos (\pi +\theta )=-\cos \theta \].
\[\Rightarrow {{A}^{2}}={{\sin }^{2}}\dfrac{2\pi }{7}+{{\sin }^{2}}\dfrac{4\pi }{7}+{{\sin }^{2}}\dfrac{8\pi }{7}+\left( \cos \dfrac{2\pi }{7}-\cos \dfrac{6\pi }{7} \right)+\left( \cos \dfrac{4\pi }{7}+\cos \dfrac{5\pi }{7} \right)+\left( \cos \left( \dfrac{6\pi }{7} \right)+\cos \dfrac{3\pi }{7} \right)\]
We know that
\[\Rightarrow {{A}^{2}}={{\sin }^{2}}\dfrac{2\pi }{7}+{{\sin }^{2}}\dfrac{4\pi }{7}+{{\sin }^{2}}\dfrac{8\pi }{7}+\left( cos\dfrac{2\pi }{7}-\cos \dfrac{6\pi }{7} \right)+\left( \cos \left( \pi -\dfrac{3\pi }{7} \right)+\cos \left( \pi -\dfrac{2\pi }{7} \right) \right)+\left( \cos \dfrac{6\pi }{7}+\cos \left( \dfrac{3\pi }{7} \right) \right)\]
We know that \[\cos (\pi -\theta )=-\cos \theta \].
\[\begin{align}
& \Rightarrow {{A}^{2}}={{\sin }^{2}}\dfrac{2\pi }{7}+{{\sin }^{2}}\dfrac{4\pi }{7}+{{\sin }^{2}}\dfrac{8\pi }{7}+\left( \cos \dfrac{2\pi }{7}-\cos \dfrac{6\pi }{7} \right)+\left( -\cos \dfrac{3\pi }{7}-\cos \dfrac{2\pi }{7} \right)+\left( \cos \dfrac{6\pi }{7}+\cos \dfrac{3\pi }{7} \right) \\
& \Rightarrow {{A}^{2}}={{\sin }^{2}}\dfrac{2\pi }{7}+{{\sin }^{2}}\dfrac{4\pi }{7}+{{\sin }^{2}}\dfrac{8\pi }{7}.....(1) \\
\end{align}\]
From the question, we were given that \[B=\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{8\pi }{7}\].
Let us assume \[B=\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{8\pi }{7}.......(2)\]
Now squaring on both sides on equation (2).
We know that \[{{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca\].
\[\begin{align}
& {{B}^{2}}={{\left( \cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{8\pi }{7} \right)}^{2}} \\
& \Rightarrow {{B}^{2}}={{\cos }^{2}}\dfrac{2\pi }{7}+{{\cos }^{2}}\dfrac{4\pi }{7}+{{\cos }^{2}}\dfrac{8\pi }{7}+2\cos \dfrac{4\pi }{7}\cos \dfrac{2\pi }{7}+2\cos \dfrac{8\pi }{7}\cos \dfrac{4\pi }{7}+2\cos \dfrac{8\pi }{7}\cos \dfrac{2\pi }{7} \\
\end{align}\]
We know that \[2\cos C\cos D=\cos \left( \dfrac{C+D}{2} \right)+\cos \left( \dfrac{C-D}{2} \right)\].
\[\Rightarrow {{B}^{2}}={{\cos }^{2}}\dfrac{2\pi }{7}+{{\cos }^{2}}\dfrac{4\pi }{7}+{{\cos }^{2}}\dfrac{8\pi }{7}+\left( \cos \dfrac{6\pi }{7}-\cos \dfrac{2\pi }{7} \right)+\left( \cos \dfrac{12\pi }{7}-\cos \dfrac{4\pi }{7} \right)+\left( \cos \dfrac{10\pi }{7}-\cos \dfrac{6\pi }{7} \right)\]
Now let us write \[\cos \dfrac{12\pi }{7}=\cos \left( \pi +\dfrac{5\pi }{7} \right)\] and \[\cos \dfrac{10\pi }{7}=\cos \left( \pi +\dfrac{3\pi }{7} \right)\].
\[\Rightarrow {{B}^{2}}={{\cos }^{2}}\dfrac{2\pi }{7}+{{\cos }^{2}}\dfrac{4\pi }{7}+{{\cos }^{2}}\dfrac{8\pi }{7}+\left( \cos \dfrac{6\pi }{7}-\cos \left( \dfrac{2\pi }{7} \right) \right)+\left( \cos \left( \pi +\dfrac{5\pi }{7} \right)-\cos \dfrac{4\pi }{7} \right)+\left( \cos \left( \pi +\dfrac{3\pi }{7} \right)-\cos \left( \dfrac{6\pi }{7} \right) \right)\]
We know that \[\cos (\pi +\theta )=-\cos \theta \] and \[\cos (\pi -\theta )=-\cos \theta \].
\[\Rightarrow {{B}^{2}}={{\cos }^{2}}\dfrac{2\pi }{7}+{{\cos }^{2}}\dfrac{4\pi }{7}+{{\cos }^{2}}\dfrac{8\pi }{7}+\cos \dfrac{6\pi }{7}-\cos \dfrac{2\pi }{7}-\cos \dfrac{5\pi }{7}-\cos \dfrac{4\pi }{7}-\cos \dfrac{3\pi }{7}-\cos \dfrac{6\pi }{7}\]
Now let us write \[\cos \dfrac{5\pi }{7}=\cos \left( \pi -\dfrac{2\pi }{7} \right)\] and \[\cos \dfrac{4\pi }{7}=\cos \left( \pi -\dfrac{3\pi }{7} \right)\].
\[\Rightarrow {{B}^{2}}={{\cos }^{2}}\dfrac{2\pi }{7}+{{\cos }^{2}}\dfrac{4\pi }{7}+{{\cos }^{2}}\dfrac{8\pi }{7}+\cos \dfrac{6\pi }{7}-\cos \dfrac{2\pi }{7}-\cos \left( \pi -\dfrac{2\pi }{7} \right)-\cos \left( \pi -\dfrac{3\pi }{7} \right)-\cos \dfrac{3\pi }{7}-\cos \dfrac{6\pi }{7}\]
We know that \[\cos (\pi +\theta )=-\cos \theta \] and \[\cos (\pi -\theta )=-\cos \theta \].
\[\begin{align}
& \Rightarrow {{B}^{2}}={{\cos }^{2}}\dfrac{2\pi }{7}+{{\cos }^{2}}\dfrac{4\pi }{7}+{{\cos }^{2}}\dfrac{8\pi }{7}+\cos \dfrac{6\pi }{7}-\cos \dfrac{2\pi }{7}+\cos \dfrac{2\pi }{7}+\cos \dfrac{3\pi }{7}-\cos \dfrac{3\pi }{7}-\cos \dfrac{6\pi }{7} \\
& \Rightarrow {{B}^{2}}={{\cos }^{2}}\dfrac{2\pi }{7}+{{\cos }^{2}}\dfrac{4\pi }{7}+{{\cos }^{2}}\dfrac{8\pi }{7}.....(2) \\
\end{align}\]
Now we will add equation (1) and equation (2).
\[\begin{align}
& \Rightarrow {{A}^{2}}+{{B}^{2}}={{\sin }^{2}}\dfrac{2\pi }{7}+{{\sin }^{2}}\dfrac{4\pi }{7}+{{\sin }^{2}}\dfrac{8\pi }{7}+{{\cos }^{2}}\dfrac{2\pi }{7}+{{\cos }^{2}}\dfrac{4\pi }{7}+{{\cos }^{2}}\dfrac{8\pi }{7} \\
& \Rightarrow {{A}^{2}}+{{B}^{2}}={{\sin }^{2}}\dfrac{2\pi }{7}+{{\cos }^{2}}\dfrac{2\pi }{7}+{{\sin }^{2}}\dfrac{4\pi }{7}+{{\sin }^{2}}\dfrac{4\pi }{7}+{{\sin }^{2}}\dfrac{8\pi }{7}+{{\cos }^{2}}\dfrac{8\pi }{7} \\
\end{align}\]
We know that \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].
\[\begin{align}
& \Rightarrow {{A}^{2}}+{{B}^{2}}=3 \\
& \Rightarrow \sqrt{{{A}^{2}}+{{B}^{2}}}=\sqrt{3}....(3) \\
\end{align}\]
So, the value of \[\sqrt{{{A}^{2}}+{{B}^{2}}}=\sqrt{3}\].
So, the correct answer is “Option D”.
Note: Students must be careful while solving using the formula mentioned in the above solution. Students may have a misconception that \[\cos (\pi +\theta )=\cos \theta \] and \[\cos (\pi -\theta )=\cos \theta \]. If this misconception is followed, the whole solution will go wrong. So, students should have a correct concept while solving this problem. Students may also assume that \[2\sin C\sin D=\cos \left( \dfrac{C+D}{2} \right)+\cos \left( \dfrac{C-D}{2} \right)\] and \[2\cos C\cos D=\cos \left( \dfrac{C+D}{2} \right)-\cos \left( \dfrac{C-D}{2} \right)\]. This misconception should be avoided to solve this problem. Students can also try to directly add the results below,
\[\begin{align}
& {{A}^{2}}={{\left( \sin \dfrac{2\pi }{7}+\sin \dfrac{4\pi }{7}+\sin \dfrac{8\pi }{7} \right)}^{2}} \\
& \Rightarrow {{A}^{2}}={{\sin }^{2}}\dfrac{2\pi }{7}+{{\sin }^{2}}\dfrac{4\pi }{7}+{{\sin }^{2}}\dfrac{8\pi }{7}+2\sin \dfrac{4\pi }{7}\sin \dfrac{2\pi }{7}+2\sin \dfrac{8\pi }{7}\sin \dfrac{4\pi }{7}+2\sin \dfrac{8\pi }{7}\sin \dfrac{2\pi }{7} \\
\end{align}\]
\[\begin{align}
& {{B}^{2}}={{\left( \cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{8\pi }{7} \right)}^{2}} \\
& \Rightarrow {{B}^{2}}={{\cos }^{2}}\dfrac{2\pi }{7}+{{\cos }^{2}}\dfrac{4\pi }{7}+{{\cos }^{2}}\dfrac{8\pi }{7}+2\cos \dfrac{4\pi }{7}\cos \dfrac{2\pi }{7}+2\cos \dfrac{8\pi }{7}\cos \dfrac{4\pi }{7}+2\cos \dfrac{8\pi }{7}\cos \dfrac{2\pi }{7} \\
\end{align}\]
This method might get difficult to solve as eliminating terms will be difficult and students will find it hard to reach a final answer, so it is advised to proceed with the method in solution.
Complete step-by-step answer:
From the question, we were given that \[A=\sin \dfrac{2\pi }{7}+\sin \dfrac{4\pi }{7}+\sin \dfrac{8\pi }{7}\].
Let us assume \[A=\sin \dfrac{2\pi }{7}+\sin \dfrac{4\pi }{7}+\sin \dfrac{8\pi }{7}.....(1)\].
We know that \[{{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca\].
Now we squaring on both sides of equation (1).
\[\begin{align}
& {{A}^{2}}={{\left( \sin \dfrac{2\pi }{7}+\sin \dfrac{4\pi }{7}+\sin \dfrac{8\pi }{7} \right)}^{2}} \\
& \Rightarrow {{A}^{2}}={{\sin }^{2}}\dfrac{2\pi }{7}+{{\sin }^{2}}\dfrac{4\pi }{7}+{{\sin }^{2}}\dfrac{8\pi }{7}+2\sin \dfrac{4\pi }{7}\sin \dfrac{2\pi }{7}+2\sin \dfrac{8\pi }{7}\sin \dfrac{4\pi }{7}+2\sin \dfrac{8\pi }{7}\sin \dfrac{2\pi }{7} \\
\end{align}\]
We know that \[2\sin C\sin D=\cos \left( \dfrac{C-D}{2} \right)-\cos \left( \dfrac{C+D}{2} \right)\].
\[\Rightarrow {{A}^{2}}={{\sin }^{2}}\dfrac{2\pi }{7}+{{\sin }^{2}}\dfrac{4\pi }{7}+{{\sin }^{2}}\dfrac{8\pi }{7}+\left( \cos \dfrac{2\pi }{7}-\cos \dfrac{6\pi }{7} \right)+\left( \cos \dfrac{4\pi }{7}-\cos \dfrac{12\pi }{7} \right)+\left( \cos \dfrac{6\pi }{7}-\cos \dfrac{10\pi }{7} \right)\]
Now let us write \[\cos \dfrac{12\pi }{7}=\cos \left( \pi +\dfrac{5\pi }{7} \right)\] and \[\cos \dfrac{10\pi }{7}=\cos \left( \pi +\dfrac{3\pi }{7} \right)\].
\[\Rightarrow {{A}^{2}}={{\sin }^{2}}\dfrac{2\pi }{7}+{{\sin }^{2}}\dfrac{4\pi }{7}+{{\sin }^{2}}\dfrac{8\pi }{7}+\left( \cos \dfrac{2\pi }{7}-\cos \left( \dfrac{6\pi }{7} \right) \right)+\left( \cos \dfrac{4\pi }{7}-\cos \left( \pi +\dfrac{5\pi }{7} \right) \right)+\left( \cos \left( \dfrac{6\pi }{7} \right)-\cos \left( \pi +\dfrac{3\pi }{7} \right) \right)\]
We know that \[\cos (\pi +\theta )=-\cos \theta \].
\[\Rightarrow {{A}^{2}}={{\sin }^{2}}\dfrac{2\pi }{7}+{{\sin }^{2}}\dfrac{4\pi }{7}+{{\sin }^{2}}\dfrac{8\pi }{7}+\left( \cos \dfrac{2\pi }{7}-\cos \dfrac{6\pi }{7} \right)+\left( \cos \dfrac{4\pi }{7}+\cos \dfrac{5\pi }{7} \right)+\left( \cos \left( \dfrac{6\pi }{7} \right)+\cos \dfrac{3\pi }{7} \right)\]
We know that
\[\Rightarrow {{A}^{2}}={{\sin }^{2}}\dfrac{2\pi }{7}+{{\sin }^{2}}\dfrac{4\pi }{7}+{{\sin }^{2}}\dfrac{8\pi }{7}+\left( cos\dfrac{2\pi }{7}-\cos \dfrac{6\pi }{7} \right)+\left( \cos \left( \pi -\dfrac{3\pi }{7} \right)+\cos \left( \pi -\dfrac{2\pi }{7} \right) \right)+\left( \cos \dfrac{6\pi }{7}+\cos \left( \dfrac{3\pi }{7} \right) \right)\]
We know that \[\cos (\pi -\theta )=-\cos \theta \].
\[\begin{align}
& \Rightarrow {{A}^{2}}={{\sin }^{2}}\dfrac{2\pi }{7}+{{\sin }^{2}}\dfrac{4\pi }{7}+{{\sin }^{2}}\dfrac{8\pi }{7}+\left( \cos \dfrac{2\pi }{7}-\cos \dfrac{6\pi }{7} \right)+\left( -\cos \dfrac{3\pi }{7}-\cos \dfrac{2\pi }{7} \right)+\left( \cos \dfrac{6\pi }{7}+\cos \dfrac{3\pi }{7} \right) \\
& \Rightarrow {{A}^{2}}={{\sin }^{2}}\dfrac{2\pi }{7}+{{\sin }^{2}}\dfrac{4\pi }{7}+{{\sin }^{2}}\dfrac{8\pi }{7}.....(1) \\
\end{align}\]
From the question, we were given that \[B=\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{8\pi }{7}\].
Let us assume \[B=\cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{8\pi }{7}.......(2)\]
Now squaring on both sides on equation (2).
We know that \[{{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ca\].
\[\begin{align}
& {{B}^{2}}={{\left( \cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{8\pi }{7} \right)}^{2}} \\
& \Rightarrow {{B}^{2}}={{\cos }^{2}}\dfrac{2\pi }{7}+{{\cos }^{2}}\dfrac{4\pi }{7}+{{\cos }^{2}}\dfrac{8\pi }{7}+2\cos \dfrac{4\pi }{7}\cos \dfrac{2\pi }{7}+2\cos \dfrac{8\pi }{7}\cos \dfrac{4\pi }{7}+2\cos \dfrac{8\pi }{7}\cos \dfrac{2\pi }{7} \\
\end{align}\]
We know that \[2\cos C\cos D=\cos \left( \dfrac{C+D}{2} \right)+\cos \left( \dfrac{C-D}{2} \right)\].
\[\Rightarrow {{B}^{2}}={{\cos }^{2}}\dfrac{2\pi }{7}+{{\cos }^{2}}\dfrac{4\pi }{7}+{{\cos }^{2}}\dfrac{8\pi }{7}+\left( \cos \dfrac{6\pi }{7}-\cos \dfrac{2\pi }{7} \right)+\left( \cos \dfrac{12\pi }{7}-\cos \dfrac{4\pi }{7} \right)+\left( \cos \dfrac{10\pi }{7}-\cos \dfrac{6\pi }{7} \right)\]
Now let us write \[\cos \dfrac{12\pi }{7}=\cos \left( \pi +\dfrac{5\pi }{7} \right)\] and \[\cos \dfrac{10\pi }{7}=\cos \left( \pi +\dfrac{3\pi }{7} \right)\].
\[\Rightarrow {{B}^{2}}={{\cos }^{2}}\dfrac{2\pi }{7}+{{\cos }^{2}}\dfrac{4\pi }{7}+{{\cos }^{2}}\dfrac{8\pi }{7}+\left( \cos \dfrac{6\pi }{7}-\cos \left( \dfrac{2\pi }{7} \right) \right)+\left( \cos \left( \pi +\dfrac{5\pi }{7} \right)-\cos \dfrac{4\pi }{7} \right)+\left( \cos \left( \pi +\dfrac{3\pi }{7} \right)-\cos \left( \dfrac{6\pi }{7} \right) \right)\]
We know that \[\cos (\pi +\theta )=-\cos \theta \] and \[\cos (\pi -\theta )=-\cos \theta \].
\[\Rightarrow {{B}^{2}}={{\cos }^{2}}\dfrac{2\pi }{7}+{{\cos }^{2}}\dfrac{4\pi }{7}+{{\cos }^{2}}\dfrac{8\pi }{7}+\cos \dfrac{6\pi }{7}-\cos \dfrac{2\pi }{7}-\cos \dfrac{5\pi }{7}-\cos \dfrac{4\pi }{7}-\cos \dfrac{3\pi }{7}-\cos \dfrac{6\pi }{7}\]
Now let us write \[\cos \dfrac{5\pi }{7}=\cos \left( \pi -\dfrac{2\pi }{7} \right)\] and \[\cos \dfrac{4\pi }{7}=\cos \left( \pi -\dfrac{3\pi }{7} \right)\].
\[\Rightarrow {{B}^{2}}={{\cos }^{2}}\dfrac{2\pi }{7}+{{\cos }^{2}}\dfrac{4\pi }{7}+{{\cos }^{2}}\dfrac{8\pi }{7}+\cos \dfrac{6\pi }{7}-\cos \dfrac{2\pi }{7}-\cos \left( \pi -\dfrac{2\pi }{7} \right)-\cos \left( \pi -\dfrac{3\pi }{7} \right)-\cos \dfrac{3\pi }{7}-\cos \dfrac{6\pi }{7}\]
We know that \[\cos (\pi +\theta )=-\cos \theta \] and \[\cos (\pi -\theta )=-\cos \theta \].
\[\begin{align}
& \Rightarrow {{B}^{2}}={{\cos }^{2}}\dfrac{2\pi }{7}+{{\cos }^{2}}\dfrac{4\pi }{7}+{{\cos }^{2}}\dfrac{8\pi }{7}+\cos \dfrac{6\pi }{7}-\cos \dfrac{2\pi }{7}+\cos \dfrac{2\pi }{7}+\cos \dfrac{3\pi }{7}-\cos \dfrac{3\pi }{7}-\cos \dfrac{6\pi }{7} \\
& \Rightarrow {{B}^{2}}={{\cos }^{2}}\dfrac{2\pi }{7}+{{\cos }^{2}}\dfrac{4\pi }{7}+{{\cos }^{2}}\dfrac{8\pi }{7}.....(2) \\
\end{align}\]
Now we will add equation (1) and equation (2).
\[\begin{align}
& \Rightarrow {{A}^{2}}+{{B}^{2}}={{\sin }^{2}}\dfrac{2\pi }{7}+{{\sin }^{2}}\dfrac{4\pi }{7}+{{\sin }^{2}}\dfrac{8\pi }{7}+{{\cos }^{2}}\dfrac{2\pi }{7}+{{\cos }^{2}}\dfrac{4\pi }{7}+{{\cos }^{2}}\dfrac{8\pi }{7} \\
& \Rightarrow {{A}^{2}}+{{B}^{2}}={{\sin }^{2}}\dfrac{2\pi }{7}+{{\cos }^{2}}\dfrac{2\pi }{7}+{{\sin }^{2}}\dfrac{4\pi }{7}+{{\sin }^{2}}\dfrac{4\pi }{7}+{{\sin }^{2}}\dfrac{8\pi }{7}+{{\cos }^{2}}\dfrac{8\pi }{7} \\
\end{align}\]
We know that \[{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\].
\[\begin{align}
& \Rightarrow {{A}^{2}}+{{B}^{2}}=3 \\
& \Rightarrow \sqrt{{{A}^{2}}+{{B}^{2}}}=\sqrt{3}....(3) \\
\end{align}\]
So, the value of \[\sqrt{{{A}^{2}}+{{B}^{2}}}=\sqrt{3}\].
So, the correct answer is “Option D”.
Note: Students must be careful while solving using the formula mentioned in the above solution. Students may have a misconception that \[\cos (\pi +\theta )=\cos \theta \] and \[\cos (\pi -\theta )=\cos \theta \]. If this misconception is followed, the whole solution will go wrong. So, students should have a correct concept while solving this problem. Students may also assume that \[2\sin C\sin D=\cos \left( \dfrac{C+D}{2} \right)+\cos \left( \dfrac{C-D}{2} \right)\] and \[2\cos C\cos D=\cos \left( \dfrac{C+D}{2} \right)-\cos \left( \dfrac{C-D}{2} \right)\]. This misconception should be avoided to solve this problem. Students can also try to directly add the results below,
\[\begin{align}
& {{A}^{2}}={{\left( \sin \dfrac{2\pi }{7}+\sin \dfrac{4\pi }{7}+\sin \dfrac{8\pi }{7} \right)}^{2}} \\
& \Rightarrow {{A}^{2}}={{\sin }^{2}}\dfrac{2\pi }{7}+{{\sin }^{2}}\dfrac{4\pi }{7}+{{\sin }^{2}}\dfrac{8\pi }{7}+2\sin \dfrac{4\pi }{7}\sin \dfrac{2\pi }{7}+2\sin \dfrac{8\pi }{7}\sin \dfrac{4\pi }{7}+2\sin \dfrac{8\pi }{7}\sin \dfrac{2\pi }{7} \\
\end{align}\]
\[\begin{align}
& {{B}^{2}}={{\left( \cos \dfrac{2\pi }{7}+\cos \dfrac{4\pi }{7}+\cos \dfrac{8\pi }{7} \right)}^{2}} \\
& \Rightarrow {{B}^{2}}={{\cos }^{2}}\dfrac{2\pi }{7}+{{\cos }^{2}}\dfrac{4\pi }{7}+{{\cos }^{2}}\dfrac{8\pi }{7}+2\cos \dfrac{4\pi }{7}\cos \dfrac{2\pi }{7}+2\cos \dfrac{8\pi }{7}\cos \dfrac{4\pi }{7}+2\cos \dfrac{8\pi }{7}\cos \dfrac{2\pi }{7} \\
\end{align}\]
This method might get difficult to solve as eliminating terms will be difficult and students will find it hard to reach a final answer, so it is advised to proceed with the method in solution.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

