
Consider triangle ABC, right angled at C in which AB = 29 units, BC = 21 units and $\angle ABC=\theta $ (see fig.) Determine the value of ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $.
Answer
565.2k+ views
Hint: In this question, we are given a right angled triangle along with measurements of base and hypotenuse of the triangle. We need to find the value of ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $. For this, we will first find the value of the perpendicular of the right angled triangle, using Pythagoras theorem. Pythagora's theorem states that, the sum of the squares of the perpendicular and the base of the triangle is equal to the square of the hypotenuse. After that, we will find the value of $\cos \theta \text{ and }\sin \theta $ and use them to find the value of ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $.
We will use $\cos \theta =\dfrac{\text{Side adjacent to angle }\theta }{\text{Hypotenuse}}=\dfrac{\text{Base}}{\text{Hypotenuse}}$ and
$\sin \theta =\dfrac{\text{Side opposite to angle }\theta }{\text{Hypotenuse}}=\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}$.
Complete step-by-step answer:
Here we are given $\Delta ABC$ with AB = 29 and BC = 21. Since, $\Delta ABC=\theta $ so according to the diagram, base = 21 and hypotenuse = 29.
Now, let us first find the value of AC using Pythagoras theorem.
According to the Pythagoras theorem, the sum of the squares of the perpendicular and the base of the triangle is equal to the square of the hypotenuse. Hence,
\[{{\left( \text{Hypotenuse} \right)}^{2}}={{\left( \text{Perpendicular} \right)}^{2}}+{{\left( \text{Base} \right)}^{2}}\]
According to the diagram,
\[\begin{align}
& {{\left( \text{AB} \right)}^{2}}={{\left( \text{AC} \right)}^{2}}+{{\left( \text{BC} \right)}^{2}} \\
& \Rightarrow A{{C}^{2}}=A{{B}^{2}}-B{{C}^{2}} \\
\end{align}\]
Putting values of AB and BC we get:
\[\Rightarrow A{{C}^{2}}={{\left( 29 \right)}^{2}}-{{\left( 21 \right)}^{2}}\]
Let us find values of ${{\left( 29 \right)}^{2}}-{{\left( 21 \right)}^{2}}$ using the property that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. Hence, we get:
\[\begin{align}
& \Rightarrow A{{C}^{2}}=\left( 29+21 \right)\left( 29-21 \right) \\
& \Rightarrow A{{C}^{2}}=\left( 50 \right)\left( 8 \right) \\
& \Rightarrow A{{C}^{2}}=400 \\
\end{align}\]
Taking square root both sides, we get:
\[\Rightarrow AC=\sqrt{400}\]
Now, we know that, $20\times 20=400$ we get:
\[\Rightarrow AC=\sqrt{20\times 20}=20\]
So we get perpendicular = 20.
Now, let us find the value of $\cos \theta \text{ and }\sin \theta $.
As we know, $\cos \theta =\dfrac{\text{Side adjacent to angle }\theta }{\text{Hypotenuse}}=\dfrac{\text{Base}}{\text{Hypotenuse}}$.
Hence, $\cos \theta =\dfrac{21}{\text{29}}$.
As we know, $\sin \theta =\dfrac{\text{Side opposite to angle }\theta }{\text{Hypotenuse}}=\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}$.
Hence, $\sin \theta =\dfrac{20}{\text{29}}$.
Now we need to find out the value of ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $.
So putting values of $\cos \theta \text{ and }\sin \theta $ in ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $ we get:
\[\begin{align}
& \Rightarrow {{\left( \dfrac{21}{29} \right)}^{2}}+{{\left( \dfrac{20}{29} \right)}^{2}} \\
& \Rightarrow \dfrac{{{\left( 21 \right)}^{2}}+{{\left( 20 \right)}^{2}}}{{{\left( 29 \right)}^{2}}} \\
& \Rightarrow \dfrac{441+400}{841} \\
& \Rightarrow \dfrac{841}{841} \\
& \Rightarrow 1 \\
\end{align}\]
Hence the value of ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $ is 1.
Note: Students should take care while finding the value of perpendicular. Students can get confused between base and perpendicular while applying to the formula of $\cos \theta \text{ and }\sin \theta $. They can check their answer knowing that ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $ is always 1 because $\cos \theta =\dfrac{B}{H}\text{ and }\sin \theta =\dfrac{P}{H}\Rightarrow {{\cos }^{2}}\theta +{{\sin }^{2}}\theta ={{\left( \dfrac{B}{H} \right)}^{2}}+{{\left( \dfrac{P}{H} \right)}^{2}}\Rightarrow {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =\dfrac{{{B}^{2}}+{{P}^{2}}}{{{H}^{2}}}$. By Pythagoras theorem, ${{B}^{2}}+{{P}^{2}}={{H}^{2}}$ so ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =\dfrac{{{H}^{2}}}{{{H}^{2}}}=1$. Here, B is base, P is perpendicular and H is hypotenuse.
We will use $\cos \theta =\dfrac{\text{Side adjacent to angle }\theta }{\text{Hypotenuse}}=\dfrac{\text{Base}}{\text{Hypotenuse}}$ and
$\sin \theta =\dfrac{\text{Side opposite to angle }\theta }{\text{Hypotenuse}}=\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}$.
Complete step-by-step answer:
Here we are given $\Delta ABC$ with AB = 29 and BC = 21. Since, $\Delta ABC=\theta $ so according to the diagram, base = 21 and hypotenuse = 29.
Now, let us first find the value of AC using Pythagoras theorem.
According to the Pythagoras theorem, the sum of the squares of the perpendicular and the base of the triangle is equal to the square of the hypotenuse. Hence,
\[{{\left( \text{Hypotenuse} \right)}^{2}}={{\left( \text{Perpendicular} \right)}^{2}}+{{\left( \text{Base} \right)}^{2}}\]
According to the diagram,
\[\begin{align}
& {{\left( \text{AB} \right)}^{2}}={{\left( \text{AC} \right)}^{2}}+{{\left( \text{BC} \right)}^{2}} \\
& \Rightarrow A{{C}^{2}}=A{{B}^{2}}-B{{C}^{2}} \\
\end{align}\]
Putting values of AB and BC we get:
\[\Rightarrow A{{C}^{2}}={{\left( 29 \right)}^{2}}-{{\left( 21 \right)}^{2}}\]
Let us find values of ${{\left( 29 \right)}^{2}}-{{\left( 21 \right)}^{2}}$ using the property that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. Hence, we get:
\[\begin{align}
& \Rightarrow A{{C}^{2}}=\left( 29+21 \right)\left( 29-21 \right) \\
& \Rightarrow A{{C}^{2}}=\left( 50 \right)\left( 8 \right) \\
& \Rightarrow A{{C}^{2}}=400 \\
\end{align}\]
Taking square root both sides, we get:
\[\Rightarrow AC=\sqrt{400}\]
Now, we know that, $20\times 20=400$ we get:
\[\Rightarrow AC=\sqrt{20\times 20}=20\]
So we get perpendicular = 20.
Now, let us find the value of $\cos \theta \text{ and }\sin \theta $.
As we know, $\cos \theta =\dfrac{\text{Side adjacent to angle }\theta }{\text{Hypotenuse}}=\dfrac{\text{Base}}{\text{Hypotenuse}}$.
Hence, $\cos \theta =\dfrac{21}{\text{29}}$.
As we know, $\sin \theta =\dfrac{\text{Side opposite to angle }\theta }{\text{Hypotenuse}}=\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}$.
Hence, $\sin \theta =\dfrac{20}{\text{29}}$.
Now we need to find out the value of ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $.
So putting values of $\cos \theta \text{ and }\sin \theta $ in ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $ we get:
\[\begin{align}
& \Rightarrow {{\left( \dfrac{21}{29} \right)}^{2}}+{{\left( \dfrac{20}{29} \right)}^{2}} \\
& \Rightarrow \dfrac{{{\left( 21 \right)}^{2}}+{{\left( 20 \right)}^{2}}}{{{\left( 29 \right)}^{2}}} \\
& \Rightarrow \dfrac{441+400}{841} \\
& \Rightarrow \dfrac{841}{841} \\
& \Rightarrow 1 \\
\end{align}\]
Hence the value of ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $ is 1.
Note: Students should take care while finding the value of perpendicular. Students can get confused between base and perpendicular while applying to the formula of $\cos \theta \text{ and }\sin \theta $. They can check their answer knowing that ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $ is always 1 because $\cos \theta =\dfrac{B}{H}\text{ and }\sin \theta =\dfrac{P}{H}\Rightarrow {{\cos }^{2}}\theta +{{\sin }^{2}}\theta ={{\left( \dfrac{B}{H} \right)}^{2}}+{{\left( \dfrac{P}{H} \right)}^{2}}\Rightarrow {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =\dfrac{{{B}^{2}}+{{P}^{2}}}{{{H}^{2}}}$. By Pythagoras theorem, ${{B}^{2}}+{{P}^{2}}={{H}^{2}}$ so ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =\dfrac{{{H}^{2}}}{{{H}^{2}}}=1$. Here, B is base, P is perpendicular and H is hypotenuse.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

