
Consider three matrices given as \[A=\left[ \begin{matrix}
x & y & z \\
\end{matrix} \right],B=\left[ \begin{matrix}
a & h & g \\
h & b & f \\
g & f & c \\
\end{matrix} \right],C=\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right].\] Then ABC = 0, if
\[\left( a \right)\left[ a{{x}^{2}}+b{{y}^{2}}+c{{z}^{2}}+2gxy+2fyz+2czx \right]=0\]
\[\left( b \right)\left[ a{{x}^{2}}+c{{y}^{2}}+b{{z}^{2}}+xy+yz+zx \right]=0\]
\[\left( c \right)\left[ a{{x}^{2}}+b{{y}^{2}}+c{{z}^{2}}+2hxy+2by+2cx \right]=0\]
\[\left( d \right)\left[ a{{x}^{2}}+b{{y}^{2}}+c{{z}^{2}}+2gzx+2fyz+2hxy \right]=0\]
Answer
582.3k+ views
Hint: To solve this question, just multiply the matrix AB first and then multiply it by C to get ABC. The multiplication of two matrices M and N of the order \[M=m\times {{m}^{'}}\] and \[N=n\times {{n}^{'}}\] is valid if the number of columns of \[M={{m}^{'}}\] is equal to the number of rows of N = n.
Complete step-by-step solution
We are given that \[A=\left[ \begin{matrix}
x & y & z \\
\end{matrix} \right],B=\left[ \begin{matrix}
a & h & g \\
h & b & f \\
g & f & c \\
\end{matrix} \right],C=\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right].\] So, basically, we have to calculate ABC now. Let us first compute AB. This is possible as the order of \[A=1\times 3\] and order of \[B=3\times 3.\] So, as the row of B = column of A.
\[\Rightarrow 3=3\]
So, the matric multiplication AB product is possible.
We must know how to multiply two matrices. So, let us consider two matrices as given below.
\[\left[ \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right]\left[ \begin{matrix}
{{a}^{'}} & {{b}^{'}} & {{c}^{'}} \\
{{d}^{'}} & {{e}^{'}} & {{f}^{'}} \\
{{g}^{'}} & {{h}^{'}} & {{i}^{'}} \\
\end{matrix} \right]\]
We will multiply the elements of the first row of the first matrix with the elements of the first column of the second matrix and then add them to get the elements in the resultant matrix. So, we will have first element as \[a{{a}^{'}}+b{{d}^{'}}+c{{g}^{'}}.\] Similarly, we can compute the other elements too. Now, coming back to AB and performing the matrix multiplication, we get,
\[AB=\left[ \begin{matrix}
x & y & z \\
\end{matrix} \right]\left[ \begin{matrix}
a & h & g \\
h & b & f \\
g & f & c \\
\end{matrix} \right]\]
\[\Rightarrow AB=\left[ \begin{matrix}
ax+hy+gz & hx+by+fz & gx+fy+cz \\
\end{matrix} \right]\]
Now, let us compute ABC. Now order of \[AB=1\times 3\] and of \[C=3\times 1.\]
The number of columns of A = 3 = number of rows of C. So, multiplication ABC is valid.
\[ABC=\left( AB \right)C=AB\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]\]
\[\Rightarrow ABC=\left[ \begin{matrix}
ax+hy+gz & hx+by+fz & gx+fy+cz \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]\]
\[\Rightarrow ABC=\left[ a{{x}^{2}}+hyx+gzx+hxy+b{{y}^{2}}+fzy+gxz+fyz+c{{z}^{2}} \right]\]
Now, given that ABC = 0.
\[\Rightarrow a{{x}^{2}}+b{{y}^{2}}+c{{z}^{2}}+2hxy+2gzx+2fzy=0\]
Hence, option (d) is the right answer.
Note: Another way to solve this can be, first multiply BC, which is valid as the order of \[B=3\times 3\] and order of \[C=3\times 1=n\] and the number of rows of c = number of columns of A = 3. Therefore, the number of columns of A = 3. Therefore, BC is valid. Now, we have ordered BC as \[3\times 1.\] Again, the order of \[A=1\times 3.\] Similarly, the product of A(BC) is also valid.
Complete step-by-step solution
We are given that \[A=\left[ \begin{matrix}
x & y & z \\
\end{matrix} \right],B=\left[ \begin{matrix}
a & h & g \\
h & b & f \\
g & f & c \\
\end{matrix} \right],C=\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right].\] So, basically, we have to calculate ABC now. Let us first compute AB. This is possible as the order of \[A=1\times 3\] and order of \[B=3\times 3.\] So, as the row of B = column of A.
\[\Rightarrow 3=3\]
So, the matric multiplication AB product is possible.
We must know how to multiply two matrices. So, let us consider two matrices as given below.
\[\left[ \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right]\left[ \begin{matrix}
{{a}^{'}} & {{b}^{'}} & {{c}^{'}} \\
{{d}^{'}} & {{e}^{'}} & {{f}^{'}} \\
{{g}^{'}} & {{h}^{'}} & {{i}^{'}} \\
\end{matrix} \right]\]
We will multiply the elements of the first row of the first matrix with the elements of the first column of the second matrix and then add them to get the elements in the resultant matrix. So, we will have first element as \[a{{a}^{'}}+b{{d}^{'}}+c{{g}^{'}}.\] Similarly, we can compute the other elements too. Now, coming back to AB and performing the matrix multiplication, we get,
\[AB=\left[ \begin{matrix}
x & y & z \\
\end{matrix} \right]\left[ \begin{matrix}
a & h & g \\
h & b & f \\
g & f & c \\
\end{matrix} \right]\]
\[\Rightarrow AB=\left[ \begin{matrix}
ax+hy+gz & hx+by+fz & gx+fy+cz \\
\end{matrix} \right]\]
Now, let us compute ABC. Now order of \[AB=1\times 3\] and of \[C=3\times 1.\]
The number of columns of A = 3 = number of rows of C. So, multiplication ABC is valid.
\[ABC=\left( AB \right)C=AB\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]\]
\[\Rightarrow ABC=\left[ \begin{matrix}
ax+hy+gz & hx+by+fz & gx+fy+cz \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]\]
\[\Rightarrow ABC=\left[ a{{x}^{2}}+hyx+gzx+hxy+b{{y}^{2}}+fzy+gxz+fyz+c{{z}^{2}} \right]\]
Now, given that ABC = 0.
\[\Rightarrow a{{x}^{2}}+b{{y}^{2}}+c{{z}^{2}}+2hxy+2gzx+2fzy=0\]
Hence, option (d) is the right answer.
Note: Another way to solve this can be, first multiply BC, which is valid as the order of \[B=3\times 3\] and order of \[C=3\times 1=n\] and the number of rows of c = number of columns of A = 3. Therefore, the number of columns of A = 3. Therefore, BC is valid. Now, we have ordered BC as \[3\times 1.\] Again, the order of \[A=1\times 3.\] Similarly, the product of A(BC) is also valid.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

