
Consider the statements
Statement1: If $x\cos \theta =y\cos \left( {{120}^{\circ }}+\theta \right)=z\cos \left( {{240}^{\circ }}+\theta \right)$, then $xy+yz+zx=0$
Statement2: Value of $\cos \alpha +\cos \left( {{120}^{\circ }}+\alpha \right)+\cos \left( {{120}^{\circ }}-\alpha \right)=0$
Then which of the above statements is correct?
A. Only 1
B. Only 2
C. Both 1 and 2
D. Neither 1 nor 2
Answer
584.7k+ views
Hint: To solve this problem, we should know the formulae related to $\cos \left( A+B \right)$ and $\cos \left( A-B \right)$. The formulae are given as
$\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$
$\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$
Using these two formulae, we can find if the statement-2 is correct or not. For the statement-1 we should write $x\cos \theta =y\cos \left( {{120}^{\circ }}+\theta \right)=z\cos \left( {{240}^{\circ }}+\theta \right)=k$ and
$x=\dfrac{k}{\cos \theta },y=\dfrac{k}{\cos \left( {{120}^{\circ }}+\theta \right)},z=\dfrac{k}{\cos \left( {{240}^{\circ }}+\theta \right)}$. By considering $xy+yz+zx$ and taking the L.C.M, we get the numerator similar to the statement-2 in which we can use the above formulae to get the answer.
Complete step-by-step answer:
Let us consider the statement-2
$\cos \alpha +\cos \left( {{120}^{\circ }}+\alpha \right)+\cos \left( {{120}^{\circ }}-\alpha \right)$
We know the formulae
$\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$
$\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$
Using them in the equation, where $A={{120}^{\circ }}$ and $B=\alpha $, we get
$\begin{align}
& \cos \alpha +\cos {{120}^{\circ }}\cos \alpha -\sin {{120}^{\circ }}\sin \alpha +\cos {{120}^{\circ }}\cos \alpha +\sin {{120}^{\circ }}\sin \alpha \\
& =\cos \alpha +2\cos {{120}^{\circ }}\cos \alpha \\
\end{align}$
We know that $\cos {{120}^{\circ }}=\cos \left( 90+30 \right)=-\sin 30=-\dfrac{1}{2}$
By substituting the value in above equation, we get
$\cos \alpha +2\cos {{120}^{\circ }}\cos \alpha =\cos \alpha -2\times \dfrac{1}{2}\cos \alpha =\cos \alpha -\cos \alpha =0$
Hence, we can write that statement-2 is correct.
Let us consider statement-1.
$x\cos \theta =y\cos \left( {{120}^{\circ }}+\theta \right)=z\cos \left( {{240}^{\circ }}+\theta \right)$.
Let us consider a value k which is equal to the whole equation.
$x\cos \theta =y\cos \left( {{120}^{\circ }}+\theta \right)=z\cos \left( {{240}^{\circ }}+\theta \right)=k$
We can write the individual terms of x, y, z as
$\begin{align}
& x=\dfrac{k}{\cos \theta }, \\
& y=\dfrac{k}{\cos \left( {{120}^{\circ }}+\theta \right)} \\
& z=\dfrac{k}{\cos \left( {{240}^{\circ }}+\theta \right)} \\
\end{align}$
Let us consider the term $xy+yz+zx$. From the above relations, we can write that
$\begin{align}
& \dfrac{k}{\cos \theta }\times \dfrac{k}{\cos \left( {{120}^{\circ }}+\theta \right)}+\dfrac{k}{\cos \left( {{120}^{\circ }}+\theta \right)}\times \dfrac{k}{\cos \left( {{240}^{\circ }}+\theta \right)}+\dfrac{k}{\cos \left( {{240}^{\circ }}+\theta \right)}\times \dfrac{k}{\cos \theta } \\
& \\
\end{align}$
We can take ${{k}^{2}}$ common and L.C.M of the whole term.
$\begin{align}
& {{k}^{2}}\left( \dfrac{1}{\cos \theta \cos \left( {{120}^{\circ }}+\theta \right)}+\dfrac{1}{\cos \left( {{120}^{\circ }}+\theta \right)\cos \left( {{240}^{\circ }}+\theta \right)}+\dfrac{1}{\cos \left( {{240}^{\circ }}+\theta \right)\cos \theta } \right) \\
& ={{k}^{2}}\left( \dfrac{\cos \theta +\cos \left( {{120}^{\circ }}+\theta \right)\cos \left( {{240}^{\circ }}+\theta \right)}{\cos \theta \cos \left( {{120}^{\circ }}+\theta \right)\cos \left( {{240}^{\circ }}+\theta \right)} \right) \\
& \\
\end{align}$
Let us consider $\cos \theta +\cos \left( {{120}^{\circ }}+\theta \right)\cos \left( {{240}^{\circ }}+\theta \right)$
Applying the cosine formulae, we get
$\cos \theta +\cos {{120}^{\circ }}\cos \theta -\sin {{120}^{\circ }}\sin \theta +\cos {{240}^{\circ }}\cos \theta -\sin {{240}^{\circ }}\sin \theta $
We know the values
$\begin{align}
& \cos {{120}^{\circ }}=\cos \left( 90+30 \right)=-\sin 30=-\dfrac{1}{2} \\
& \sin {{120}^{\circ }}=\sin \left( 90+30 \right)=\cos 30=\dfrac{\sqrt{3}}{2} \\
& \cos {{240}^{\circ }}=\cos \left( 180+60 \right)=-\cos 60=-\dfrac{1}{2} \\
& \sin {{240}^{\circ }}=\sin \left( 180+60 \right)=-\sin 60=-\dfrac{\sqrt{3}}{2} \\
\end{align}$
Using these values, we get
$\cos \theta -\dfrac{1}{2}\cos \theta -\dfrac{\sqrt{3}}{2}\sin \theta -\dfrac{1}{2}\cos \theta +\dfrac{\sqrt{3}}{2}\sin \theta =\cos \theta -\cos \theta -\dfrac{\sqrt{3}}{2}\sin \theta +\dfrac{\sqrt{3}}{2}\sin \theta =0$
We got the numerator of the fraction as zero.
Hence we can conclude that
${{k}^{2}}\left( \dfrac{\cos \theta +\cos \left( {{120}^{\circ }}+\theta \right)\cos \left( {{240}^{\circ }}+\theta \right)}{\cos \theta \cos \left( {{120}^{\circ }}+\theta \right)\cos \left( {{240}^{\circ }}+\theta \right)} \right)=0$
$xy+yz+zx=0$.
Hence statement-1 is also correct.
$\therefore $ We can conclude that statement 1 and 2 are correct.
So, the correct answer is “Option C”.
Note: We can use a simpler way to solve the problem by writing the term $\cos \left( {{240}^{\circ }}+\theta \right)$ as $\cos \left( {{360}^{\circ }}-\left( {{240}^{\circ }}+\theta \right) \right)=\cos \left( {{120}^{\circ }}-\theta \right)$. Now the required proof for first and the second statements is the same. By checking any one of them, we can get the required answer.
$\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$
$\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$
Using these two formulae, we can find if the statement-2 is correct or not. For the statement-1 we should write $x\cos \theta =y\cos \left( {{120}^{\circ }}+\theta \right)=z\cos \left( {{240}^{\circ }}+\theta \right)=k$ and
$x=\dfrac{k}{\cos \theta },y=\dfrac{k}{\cos \left( {{120}^{\circ }}+\theta \right)},z=\dfrac{k}{\cos \left( {{240}^{\circ }}+\theta \right)}$. By considering $xy+yz+zx$ and taking the L.C.M, we get the numerator similar to the statement-2 in which we can use the above formulae to get the answer.
Complete step-by-step answer:
Let us consider the statement-2
$\cos \alpha +\cos \left( {{120}^{\circ }}+\alpha \right)+\cos \left( {{120}^{\circ }}-\alpha \right)$
We know the formulae
$\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$
$\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$
Using them in the equation, where $A={{120}^{\circ }}$ and $B=\alpha $, we get
$\begin{align}
& \cos \alpha +\cos {{120}^{\circ }}\cos \alpha -\sin {{120}^{\circ }}\sin \alpha +\cos {{120}^{\circ }}\cos \alpha +\sin {{120}^{\circ }}\sin \alpha \\
& =\cos \alpha +2\cos {{120}^{\circ }}\cos \alpha \\
\end{align}$
We know that $\cos {{120}^{\circ }}=\cos \left( 90+30 \right)=-\sin 30=-\dfrac{1}{2}$
By substituting the value in above equation, we get
$\cos \alpha +2\cos {{120}^{\circ }}\cos \alpha =\cos \alpha -2\times \dfrac{1}{2}\cos \alpha =\cos \alpha -\cos \alpha =0$
Hence, we can write that statement-2 is correct.
Let us consider statement-1.
$x\cos \theta =y\cos \left( {{120}^{\circ }}+\theta \right)=z\cos \left( {{240}^{\circ }}+\theta \right)$.
Let us consider a value k which is equal to the whole equation.
$x\cos \theta =y\cos \left( {{120}^{\circ }}+\theta \right)=z\cos \left( {{240}^{\circ }}+\theta \right)=k$
We can write the individual terms of x, y, z as
$\begin{align}
& x=\dfrac{k}{\cos \theta }, \\
& y=\dfrac{k}{\cos \left( {{120}^{\circ }}+\theta \right)} \\
& z=\dfrac{k}{\cos \left( {{240}^{\circ }}+\theta \right)} \\
\end{align}$
Let us consider the term $xy+yz+zx$. From the above relations, we can write that
$\begin{align}
& \dfrac{k}{\cos \theta }\times \dfrac{k}{\cos \left( {{120}^{\circ }}+\theta \right)}+\dfrac{k}{\cos \left( {{120}^{\circ }}+\theta \right)}\times \dfrac{k}{\cos \left( {{240}^{\circ }}+\theta \right)}+\dfrac{k}{\cos \left( {{240}^{\circ }}+\theta \right)}\times \dfrac{k}{\cos \theta } \\
& \\
\end{align}$
We can take ${{k}^{2}}$ common and L.C.M of the whole term.
$\begin{align}
& {{k}^{2}}\left( \dfrac{1}{\cos \theta \cos \left( {{120}^{\circ }}+\theta \right)}+\dfrac{1}{\cos \left( {{120}^{\circ }}+\theta \right)\cos \left( {{240}^{\circ }}+\theta \right)}+\dfrac{1}{\cos \left( {{240}^{\circ }}+\theta \right)\cos \theta } \right) \\
& ={{k}^{2}}\left( \dfrac{\cos \theta +\cos \left( {{120}^{\circ }}+\theta \right)\cos \left( {{240}^{\circ }}+\theta \right)}{\cos \theta \cos \left( {{120}^{\circ }}+\theta \right)\cos \left( {{240}^{\circ }}+\theta \right)} \right) \\
& \\
\end{align}$
Let us consider $\cos \theta +\cos \left( {{120}^{\circ }}+\theta \right)\cos \left( {{240}^{\circ }}+\theta \right)$
Applying the cosine formulae, we get
$\cos \theta +\cos {{120}^{\circ }}\cos \theta -\sin {{120}^{\circ }}\sin \theta +\cos {{240}^{\circ }}\cos \theta -\sin {{240}^{\circ }}\sin \theta $
We know the values
$\begin{align}
& \cos {{120}^{\circ }}=\cos \left( 90+30 \right)=-\sin 30=-\dfrac{1}{2} \\
& \sin {{120}^{\circ }}=\sin \left( 90+30 \right)=\cos 30=\dfrac{\sqrt{3}}{2} \\
& \cos {{240}^{\circ }}=\cos \left( 180+60 \right)=-\cos 60=-\dfrac{1}{2} \\
& \sin {{240}^{\circ }}=\sin \left( 180+60 \right)=-\sin 60=-\dfrac{\sqrt{3}}{2} \\
\end{align}$
Using these values, we get
$\cos \theta -\dfrac{1}{2}\cos \theta -\dfrac{\sqrt{3}}{2}\sin \theta -\dfrac{1}{2}\cos \theta +\dfrac{\sqrt{3}}{2}\sin \theta =\cos \theta -\cos \theta -\dfrac{\sqrt{3}}{2}\sin \theta +\dfrac{\sqrt{3}}{2}\sin \theta =0$
We got the numerator of the fraction as zero.
Hence we can conclude that
${{k}^{2}}\left( \dfrac{\cos \theta +\cos \left( {{120}^{\circ }}+\theta \right)\cos \left( {{240}^{\circ }}+\theta \right)}{\cos \theta \cos \left( {{120}^{\circ }}+\theta \right)\cos \left( {{240}^{\circ }}+\theta \right)} \right)=0$
$xy+yz+zx=0$.
Hence statement-1 is also correct.
$\therefore $ We can conclude that statement 1 and 2 are correct.
So, the correct answer is “Option C”.
Note: We can use a simpler way to solve the problem by writing the term $\cos \left( {{240}^{\circ }}+\theta \right)$ as $\cos \left( {{360}^{\circ }}-\left( {{240}^{\circ }}+\theta \right) \right)=\cos \left( {{120}^{\circ }}-\theta \right)$. Now the required proof for first and the second statements is the same. By checking any one of them, we can get the required answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

