
Consider the reaction,
${{\text{N}}_{\text{2}}}{\text{(g)}}\,{\text{ + }}\,{\text{3}}{{\text{H}}_{\text{2}}}{\text{(g)}}\, \rightleftharpoons {\text{2}}\,{\text{N}}{{\text{H}}_{\text{3}}}{\text{(g)}}$
The equilibrium constant of the above reaction is ${{\text{K}}_{\text{P}}}$. If pure ammonia is left to dissociated, the partial pressure of ammonia at equilibrium is given by:
(Assume that ${{\text{P}}_{{\text{N}}{{\text{H}}_{\text{3}}}}} < < {{\text{P}}_{{\text{total}}}}$ at equilibrium)
A. $\dfrac{{{{\text{3}}^{3/2}}{{\text{K}}_{\text{P}}}^{1/2}{{\text{P}}^2}}}{4}$
B. $\dfrac{{{{\text{3}}^{3/2}}{{\text{K}}_{\text{P}}}^{1/2}{{\text{P}}^2}}}{{16}}$
C. $\dfrac{{{{\text{K}}_{\text{P}}}^{1/2}{{\text{P}}^2}}}{{16}}$
D. $\dfrac{{{{\text{K}}_{\text{P}}}^{1/2}{{\text{P}}^2}}}{4}$
Answer
569.4k+ views
Hint:We will determine the equilibrium concentrations for the reaction. Then we will write equilibrium constant expressions. By substituting the equilibrium concentration we will determine the partial pressure of left ammonia.
Complete answer:
The equilibrium constant ${{\text{K}}_{\text{P}}}$ is defined as the product of the pressure of products having a stoichiometric coefficient as power divided by the product of the pressure of reactants having a stoichiometric coefficient as power.
Consider a general reaction as follows:
${\text{aA}}\, + \,{\text{bB}}\,\, \rightleftharpoons {\text{cC}}\,{\text{ + }}\,{\text{dD}}$
The equilibrium constant expression for the above reaction is as follows:
${{\text{k}}_{\text{P}}}{\text{ = }}\,\dfrac{{{{\left[ {\text{C}} \right]}^{\text{c}}}\,\,{{\left[ {\text{D}} \right]}^{\text{d}}}}}{{{{\left[ {\text{A}} \right]}^{\text{a}}}{{\left[ {\text{B}} \right]}^{\text{b}}}}}\,$
Where, $\left[ {\;} \right]$ represents the pressure.
The given reaction is as follows:
${{\text{N}}_{\text{2}}}{\text{(g)}}\,{\text{ + }}\,{\text{3}}{{\text{H}}_{\text{2}}}{\text{(g)}}\, \rightleftharpoons {\text{2}}\,{\text{N}}{{\text{H}}_{\text{3}}}{\text{(g)}}$
The equilibrium constant expression for the above reaction is as follows:
${{\text{k}}_{\text{P}}}{\text{ = }}\,\dfrac{{{{\left[ {{\text{N}}{{\text{H}}_{\text{3}}}} \right]}^{\text{2}}}\,\,}}{{\left[ {{{\text{N}}_{\text{2}}}} \right]{{\left[ {{{\text{H}}_{\text{2}}}} \right]}^{\text{3}}}}}\,$
Amount is taken in the form of pressure. So,
${{\text{k}}_{\text{P}}}{\text{ = }}\,\dfrac{{{{\left[ {{{\text{P}}_{{\text{N}}{{\text{H}}_{\text{3}}}}}} \right]}^{\text{2}}}\,\,}}{{\left[ {{{\text{P}}_{{{\text{N}}_2}}}} \right]{{\left[ {{{\text{P}}_{{{\text{H}}_2}}}} \right]}^{\text{3}}}}}\,$…..$(1)$
We will write the initial pressure and equilibrium pressure of each species to determine the total pressure at equilibrium as follows:
As the ammonia is left over so,
\[\:\:\;\;\:\:\:\:\:\: \:\:\:\: {\text{2}}\,{\text{N}}{{\text{H}}_{\text{3}}}{\text{(g)}}\, \rightleftharpoons {{\text{N}}_{\text{2}}}{\text{(g)}}\,{\text{ + }}\,{\text{3}}{{\text{H}}_{\text{2}}}{\text{(g)}}\]
\[{\text{t = 0,}}\,\,\,\,\,\,\,\,\,{{\text{P}}_{{\text{N}}{{\text{H}}_{\text{3}}}}}\,\,\,\,\,\,\,\:\:\:\:\:\:\:\:0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\:\:\:\:0\]
\[{\text{t = equi,}}\,\,{{\text{P}}_{{\text{N}}{{\text{H}}_{\text{3}}}}}\,\,\,\:\:\:\:\:\:\:\:\:\dfrac{{\text{P}}}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\:\:\dfrac{{{\text{3P }}}}{2}\]
Initial all pressure of reaction mixture will be due to ammonia. At equilibrium, this will be due to all species.
So, the total pressure at equilibrium is,
\[{{\text{P}}_{{\text{equi}}}} = \,\,\,{{\text{P}}_{{\text{N}}{{\text{H}}_{\text{3}}}}} + \,\dfrac{{\text{P}}}{2}\,\, + \,\dfrac{{{\text{3P }}}}{2}\]
It is given that ${{\text{P}}_{{\text{N}}{{\text{H}}_{\text{3}}}}} < < {{\text{P}}_{{\text{total}}}}$ at equilibrium so, total pressure at equilibrium is,
\[{{\text{P}}_{{\text{equi}}}} = \,\,\dfrac{{\text{P}}}{2}\,\, + \,\dfrac{{{\text{3P }}}}{2}\]
Substitute equilibrium pressure of each in equation $(1)$ .
\[\Rightarrow {{\text{k}}_{\text{P}}}{\text{ = }}\,\dfrac{{{{\left[ {{{\text{P}}_{{\text{N}}{{\text{H}}_{\text{3}}}}}} \right]}^{\text{2}}}\,\,}}{{\left[ {\dfrac{{\text{P}}}{2}} \right]{{\left[ {\dfrac{{{\text{3P}}}}{2}} \right]}^{\text{3}}}}}\,\]
\[\Rightarrow {\left[ {{{\text{P}}_{{\text{N}}{{\text{H}}_{\text{3}}}}}} \right]^{\text{2}}} = \,{{\text{k}}_{\text{P}}} \times \left[ {\dfrac{{\text{P}}}{2}} \right]{\left[ {\dfrac{{{\text{3P}}}}{2}} \right]^{\text{3}}}\,\]
$\Rightarrow {\left[ {{{\text{P}}_{{\text{N}}{{\text{H}}_{\text{3}}}}}} \right]^{\text{2}}} = \,{{\text{k}}_{\text{P}}} \times {{\text{3}}^3}\, \times {\left[ {\dfrac{{\text{P}}}{4}} \right]^4}\,$
$\Rightarrow {\left[ {{{\text{P}}_{{\text{N}}{{\text{H}}_{\text{3}}}}}} \right]^{\text{2}}} = \,\dfrac{{{{\text{3}}^3}{{\text{k}}_{\text{P}}}{{\text{P}}^4}}}{{256}}$
$\Rightarrow \left[ {{{\text{P}}_{{\text{N}}{{\text{H}}_{\text{3}}}}}} \right] = \dfrac{{{{\text{3}}^{3/2}}{{\text{K}}_{\text{P}}}^{1/2}{{\text{P}}^2}}}{{16}}$
So, the partial pressure of ammonia at equilibrium is given by $\dfrac{{{{\text{3}}^{3/2}}{{\text{K}}_{\text{P}}}^{1/2}{{\text{P}}^2}}}{{16}}$.
Therefore, option (B) $\dfrac{{{{\text{3}}^{3/2}}{{\text{K}}_{\text{P}}}^{1/2}{{\text{P}}^2}}}{{16}}$ is correct.
Note:
At equilibrium total pressure of the mixture is due to all species. As the ammonia is dissociating so, the amount of ammonia is decreasing, so we can neglect the pressure of ammonia at equilibrium. We have to determine the partial pressure of leftover ammonia so, we consider ammonia is dissociating into nitrogen and hydrogen to determine the equilibrium concentration. Amount of product is divided by the stoichiometric of the reactant and multiplied by the stoichiometric of the product.
Complete answer:
The equilibrium constant ${{\text{K}}_{\text{P}}}$ is defined as the product of the pressure of products having a stoichiometric coefficient as power divided by the product of the pressure of reactants having a stoichiometric coefficient as power.
Consider a general reaction as follows:
${\text{aA}}\, + \,{\text{bB}}\,\, \rightleftharpoons {\text{cC}}\,{\text{ + }}\,{\text{dD}}$
The equilibrium constant expression for the above reaction is as follows:
${{\text{k}}_{\text{P}}}{\text{ = }}\,\dfrac{{{{\left[ {\text{C}} \right]}^{\text{c}}}\,\,{{\left[ {\text{D}} \right]}^{\text{d}}}}}{{{{\left[ {\text{A}} \right]}^{\text{a}}}{{\left[ {\text{B}} \right]}^{\text{b}}}}}\,$
Where, $\left[ {\;} \right]$ represents the pressure.
The given reaction is as follows:
${{\text{N}}_{\text{2}}}{\text{(g)}}\,{\text{ + }}\,{\text{3}}{{\text{H}}_{\text{2}}}{\text{(g)}}\, \rightleftharpoons {\text{2}}\,{\text{N}}{{\text{H}}_{\text{3}}}{\text{(g)}}$
The equilibrium constant expression for the above reaction is as follows:
${{\text{k}}_{\text{P}}}{\text{ = }}\,\dfrac{{{{\left[ {{\text{N}}{{\text{H}}_{\text{3}}}} \right]}^{\text{2}}}\,\,}}{{\left[ {{{\text{N}}_{\text{2}}}} \right]{{\left[ {{{\text{H}}_{\text{2}}}} \right]}^{\text{3}}}}}\,$
Amount is taken in the form of pressure. So,
${{\text{k}}_{\text{P}}}{\text{ = }}\,\dfrac{{{{\left[ {{{\text{P}}_{{\text{N}}{{\text{H}}_{\text{3}}}}}} \right]}^{\text{2}}}\,\,}}{{\left[ {{{\text{P}}_{{{\text{N}}_2}}}} \right]{{\left[ {{{\text{P}}_{{{\text{H}}_2}}}} \right]}^{\text{3}}}}}\,$…..$(1)$
We will write the initial pressure and equilibrium pressure of each species to determine the total pressure at equilibrium as follows:
As the ammonia is left over so,
\[\:\:\;\;\:\:\:\:\:\: \:\:\:\: {\text{2}}\,{\text{N}}{{\text{H}}_{\text{3}}}{\text{(g)}}\, \rightleftharpoons {{\text{N}}_{\text{2}}}{\text{(g)}}\,{\text{ + }}\,{\text{3}}{{\text{H}}_{\text{2}}}{\text{(g)}}\]
\[{\text{t = 0,}}\,\,\,\,\,\,\,\,\,{{\text{P}}_{{\text{N}}{{\text{H}}_{\text{3}}}}}\,\,\,\,\,\,\,\:\:\:\:\:\:\:\:0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\:\:\:\:0\]
\[{\text{t = equi,}}\,\,{{\text{P}}_{{\text{N}}{{\text{H}}_{\text{3}}}}}\,\,\,\:\:\:\:\:\:\:\:\:\dfrac{{\text{P}}}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\:\:\dfrac{{{\text{3P }}}}{2}\]
Initial all pressure of reaction mixture will be due to ammonia. At equilibrium, this will be due to all species.
So, the total pressure at equilibrium is,
\[{{\text{P}}_{{\text{equi}}}} = \,\,\,{{\text{P}}_{{\text{N}}{{\text{H}}_{\text{3}}}}} + \,\dfrac{{\text{P}}}{2}\,\, + \,\dfrac{{{\text{3P }}}}{2}\]
It is given that ${{\text{P}}_{{\text{N}}{{\text{H}}_{\text{3}}}}} < < {{\text{P}}_{{\text{total}}}}$ at equilibrium so, total pressure at equilibrium is,
\[{{\text{P}}_{{\text{equi}}}} = \,\,\dfrac{{\text{P}}}{2}\,\, + \,\dfrac{{{\text{3P }}}}{2}\]
Substitute equilibrium pressure of each in equation $(1)$ .
\[\Rightarrow {{\text{k}}_{\text{P}}}{\text{ = }}\,\dfrac{{{{\left[ {{{\text{P}}_{{\text{N}}{{\text{H}}_{\text{3}}}}}} \right]}^{\text{2}}}\,\,}}{{\left[ {\dfrac{{\text{P}}}{2}} \right]{{\left[ {\dfrac{{{\text{3P}}}}{2}} \right]}^{\text{3}}}}}\,\]
\[\Rightarrow {\left[ {{{\text{P}}_{{\text{N}}{{\text{H}}_{\text{3}}}}}} \right]^{\text{2}}} = \,{{\text{k}}_{\text{P}}} \times \left[ {\dfrac{{\text{P}}}{2}} \right]{\left[ {\dfrac{{{\text{3P}}}}{2}} \right]^{\text{3}}}\,\]
$\Rightarrow {\left[ {{{\text{P}}_{{\text{N}}{{\text{H}}_{\text{3}}}}}} \right]^{\text{2}}} = \,{{\text{k}}_{\text{P}}} \times {{\text{3}}^3}\, \times {\left[ {\dfrac{{\text{P}}}{4}} \right]^4}\,$
$\Rightarrow {\left[ {{{\text{P}}_{{\text{N}}{{\text{H}}_{\text{3}}}}}} \right]^{\text{2}}} = \,\dfrac{{{{\text{3}}^3}{{\text{k}}_{\text{P}}}{{\text{P}}^4}}}{{256}}$
$\Rightarrow \left[ {{{\text{P}}_{{\text{N}}{{\text{H}}_{\text{3}}}}}} \right] = \dfrac{{{{\text{3}}^{3/2}}{{\text{K}}_{\text{P}}}^{1/2}{{\text{P}}^2}}}{{16}}$
So, the partial pressure of ammonia at equilibrium is given by $\dfrac{{{{\text{3}}^{3/2}}{{\text{K}}_{\text{P}}}^{1/2}{{\text{P}}^2}}}{{16}}$.
Therefore, option (B) $\dfrac{{{{\text{3}}^{3/2}}{{\text{K}}_{\text{P}}}^{1/2}{{\text{P}}^2}}}{{16}}$ is correct.
Note:
At equilibrium total pressure of the mixture is due to all species. As the ammonia is dissociating so, the amount of ammonia is decreasing, so we can neglect the pressure of ammonia at equilibrium. We have to determine the partial pressure of leftover ammonia so, we consider ammonia is dissociating into nitrogen and hydrogen to determine the equilibrium concentration. Amount of product is divided by the stoichiometric of the reactant and multiplied by the stoichiometric of the product.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

