
Consider the ratio $r = \dfrac{{\left( {1 - a} \right)}}{{\left( {1 + a} \right)}}$to be determined by measuring a dimensionless quantity a. If the error in the measurement of a is$\Delta a\left( {\dfrac{{\Delta a}}{a} \ll 1} \right)$, then what is the error $\Delta r$in determining r?
A. $\dfrac{{\Delta a}}{{{{\left( {1 + a} \right)}^2}}}$
B. $\dfrac{{2\Delta a}}{{{{\left( {1 + a} \right)}^2}}}$
C. $\dfrac{{2\Delta a}}{{{{\left( {1 - a} \right)}^2}}}$
D. $\dfrac{{2a\Delta a}}{{{{\left( {1 - a} \right)}^2}}}$
Answer
564.9k+ views
Hint: In this question for the ratio $r = \dfrac{{\left( {1 - a} \right)}}{{\left( {1 + a} \right)}}$, we fill find the $\dfrac{{\Delta r}}{r}$ by using ratio error technique and then we will reduce the equation after which we will substitute the value of the $r = \dfrac{{\left( {1 - a} \right)}}{{\left( {1 + a} \right)}}$ to find the error $\Delta r$ in determining r.
Complete step by step answer:
$r = \dfrac{{\left( {1 - a} \right)}}{{\left( {1 + a} \right)}}$
Now we know that the ratio error for$x = \dfrac{A}{B}$ is given by the formula $\dfrac{{\Delta x}}{x} = \dfrac{{\Delta A}}{A} + \dfrac{{\Delta B}}{B}$, hence we can write the ratio (i) as
$\dfrac{{\Delta r}}{r} = \dfrac{{\Delta \left( {1 - a} \right)}}{{\left( {1 - a} \right)}} + \dfrac{{\Delta \left( {1 + a} \right)}}{{\left( {1 + a} \right)}}$
Hence this can be written as
$\dfrac{{\Delta r}}{r} = \dfrac{{\Delta a}}{{\left( {1 - a} \right)}} + \dfrac{{\Delta a}}{{\left( {1 + a} \right)}}$
By further solving we get
$
\dfrac{{\Delta r}}{r} = \dfrac{{\Delta a\left( {1 + a} \right) + \Delta a\left( {1 - a} \right)}}{{\left( {1 - a} \right)\left( {1 + a} \right)}} \\
\implies \dfrac{{\Delta r}}{r} = \dfrac{{\Delta a\left( {1 + a + 1 - a} \right)}}{{\left( {1 - a} \right)\left( {1 + a} \right)}} \\
\implies \dfrac{{\Delta r}}{r} = \dfrac{{2\Delta a}}{{\left( {1 - a} \right)\left( {1 + a} \right)}} \\
$
Now substitute the value of r from the equation (i), we get
$
\Delta r = \dfrac{{2\Delta a}}{{\left( {1 - a} \right)\left( {1 + a} \right)}}r \\
\implies \Delta r = \dfrac{{2\Delta a}}{{\left( {1 - a} \right)\left( {1 + a} \right)}}\dfrac{{\left( {1 - a} \right)}}{{\left( {1 + a} \right)}} \\
$
Hence we get
$
\Delta r = \dfrac{{2\Delta a}}{{\left( {1 + a} \right)\left( {1 + a} \right)}} \\
= \dfrac{{2\Delta a}}{{{{\left( {1 + a} \right)}^2}}} \\
$
Therefore the error $\Delta r = \dfrac{{2\Delta a}}{{{{\left( {1 + a} \right)}^2}}}$.
So, the correct answer is “Option B”.
Note:
Students must be careful while expanding the given expression following the error definition. The terms with the raised power puts more error in the calculation in comparison to the addition or subtraction terms.
Complete step by step answer:
$r = \dfrac{{\left( {1 - a} \right)}}{{\left( {1 + a} \right)}}$
Now we know that the ratio error for$x = \dfrac{A}{B}$ is given by the formula $\dfrac{{\Delta x}}{x} = \dfrac{{\Delta A}}{A} + \dfrac{{\Delta B}}{B}$, hence we can write the ratio (i) as
$\dfrac{{\Delta r}}{r} = \dfrac{{\Delta \left( {1 - a} \right)}}{{\left( {1 - a} \right)}} + \dfrac{{\Delta \left( {1 + a} \right)}}{{\left( {1 + a} \right)}}$
Hence this can be written as
$\dfrac{{\Delta r}}{r} = \dfrac{{\Delta a}}{{\left( {1 - a} \right)}} + \dfrac{{\Delta a}}{{\left( {1 + a} \right)}}$
By further solving we get
$
\dfrac{{\Delta r}}{r} = \dfrac{{\Delta a\left( {1 + a} \right) + \Delta a\left( {1 - a} \right)}}{{\left( {1 - a} \right)\left( {1 + a} \right)}} \\
\implies \dfrac{{\Delta r}}{r} = \dfrac{{\Delta a\left( {1 + a + 1 - a} \right)}}{{\left( {1 - a} \right)\left( {1 + a} \right)}} \\
\implies \dfrac{{\Delta r}}{r} = \dfrac{{2\Delta a}}{{\left( {1 - a} \right)\left( {1 + a} \right)}} \\
$
Now substitute the value of r from the equation (i), we get
$
\Delta r = \dfrac{{2\Delta a}}{{\left( {1 - a} \right)\left( {1 + a} \right)}}r \\
\implies \Delta r = \dfrac{{2\Delta a}}{{\left( {1 - a} \right)\left( {1 + a} \right)}}\dfrac{{\left( {1 - a} \right)}}{{\left( {1 + a} \right)}} \\
$
Hence we get
$
\Delta r = \dfrac{{2\Delta a}}{{\left( {1 + a} \right)\left( {1 + a} \right)}} \\
= \dfrac{{2\Delta a}}{{{{\left( {1 + a} \right)}^2}}} \\
$
Therefore the error $\Delta r = \dfrac{{2\Delta a}}{{{{\left( {1 + a} \right)}^2}}}$.
So, the correct answer is “Option B”.
Note:
Students must be careful while expanding the given expression following the error definition. The terms with the raised power puts more error in the calculation in comparison to the addition or subtraction terms.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

