
Consider the given expression $\sin x+{{\sin }^{2}}x=1$ , then the value of \[{{\cos }^{2}}x+{{\cos }^{4}}x\] is
(a) 0
(b) 2
(c) 1
(d) 3
Answer
592.2k+ views
Hint: In our question, we have to convert the term ${{\cos }^{2}}x+{{\cos }^{4}}x$ in terms of sine function and then we will have use $\sin x+{{\sin }^{2}}x=1$ in the modified sine function with necessary changes.
Complete step-by-step answer:
In our question, we are given that $\sin x+{{\sin }^{2}}x=1$ .We are going to use this while solving $\left[ {{\cos }^{2}}x+{{\cos }^{4}}x \right]$ part. Let us consider this equation as equation (i):
$\sin x+{{\sin }^{2}}x=1................\left( i \right)$
Now we have to solve the term ${{\cos }^{2}}x+{{\cos }^{4}}x$ and evaluate its value. Let its value be equal to y. Thus, we get:
$y=~co{{s}^{2}}x+{{\cos }^{4}}x..................\left( ii \right)$
Now, we know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ .So from this equation we will write ${{\cos }^{2}}x$ in terms of ${{\sin }^{2}}x$ i.e.
${{\cos }^{2}}x=1-{{\sin }^{2}}x................\left( iv \right)$
We will put the value of ${{\cos }^{2}}x$ from (iv) to (ii). Thus after putting we get,
$\begin{align}
& y={{\cos }^{2}}x+{{\left( {{\cos }^{2}}x \right)}^{2}} \\
& y=\left( 1-{{\sin }^{2}}x \right)+{{\left( 1-{{\sin }^{2}}x \right)}^{2}} \\
\end{align}$
We will now simplify the above equation. We know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\] . Here a = 1, $b=-{{\sin }^{2}}x$ , thus we will get:
$\begin{align}
& \Rightarrow y=\left( 1-{{\sin }^{2}}x \right)+\left[ {{\left( 1 \right)}^{2}}+{{\left( -{{\sin }^{2}}x \right)}^{2}}+2\left( 1 \right)\left( -{{\sin }^{2}}x \right) \right] \\
& \Rightarrow y=1-{{\sin }^{2}}x+\left[ 1+{{\sin }^{4}}x-2{{\sin }^{2}}x \right] \\
& \Rightarrow y=1-{{\sin }^{2}}x+1+{{\sin }^{4}}x-2{{\sin }^{2}}x \\
& \Rightarrow y=2-3{{\sin }^{2}}x+{{\sin }^{4}}x \\
& \Rightarrow y=2-4{{\sin }^{2}}x+{{\sin }^{2}}x+{{\sin }^{4}}x \\
& \Rightarrow y=2\left( 1-2{{\sin }^{2}}x \right)+\left( {{\sin }^{2}}x+{{\sin }^{4}}x \right)................\left( v \right) \\
\end{align}$ Now, we know that $\sin x+{{\sin }^{2}}x=1$ . We will square both the sides by the use of identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ where, $a=\sin x$ and $b={{\sin }^{2}}x$ .Therefore, we get
$\begin{align}
& {{\left( \sin x+{{\sin }^{2}}x \right)}^{2}}={{\left( 1 \right)}^{2}} \\
& {{\left( \sin x \right)}^{2}}+{{\left( {{\sin }^{2}}x \right)}^{2}}+2\left( \sin x \right)\left( {{\sin }^{2}}x \right)={{\left( 1 \right)}^{2}} \\
& {{\sin }^{2}}x+{{\sin }^{4}}x+2{{\sin }^{3}}x=1 \\
\end{align}$
Now, we will rearrange the terms. After rearranging we get:
${{\sin }^{2}}x+{{\sin }^{4}}x=1-2{{\sin }^{3}}x...............\left( vi \right)$
Now, we will put the value of $\left( {{\sin }^{2}}x+{{\sin }^{4}}x \right)$ from equation (vi) into equation (v). After doing this, we get:
$\begin{align}
& \Rightarrow y=2\left( 1-2{{\sin }^{2}}x \right)+1-2{{\sin }^{3}}x \\
& \Rightarrow y=2-4{{\sin }^{2}}x+1-2{{\sin }^{3}}x \\
& \Rightarrow y=3-4{{\sin }^{2}}x-2{{\sin }^{3}}x \\
& \Rightarrow y=3-2{{\sin }^{2}}x-2{{\sin }^{2}}x-2{{\sin }^{3}}x \\
& \Rightarrow y=3-2{{\sin }^{2}}x-2\left( {{\sin }^{2}}x+{{\sin }^{3}}x \right) \\
& \Rightarrow y=3-2{{\sin }^{2}}x-2\sin x\left( \sin x+{{\sin }^{2}}x \right).............\left( vii \right) \\
\end{align}$
We will put the value of $\left( \sin x+{{\sin }^{2}}x \right)$ from equation (i) to equation (vii). After doing this, we get:
$\begin{align}
& \Rightarrow y=3-2{{\sin }^{2}}x-2\sin x\left( 1 \right) \\
& \Rightarrow y=3-2{{\sin }^{2}}x-2\sin x \\
& \Rightarrow y=3-2\left( {{\sin }^{2}}x+\sin x \right)..............\left( viii \right) \\
\end{align}$
Again, we will put the value of \[\left( \sin x+{{\sin }^{2}}x \right)\] from equation (i) to equation (viii). After doing this, we will get:
$\begin{align}
& \Rightarrow y=3-2\left( 1 \right) \\
& \Rightarrow y=3-2 \\
& \Rightarrow y=1 \\
\end{align}$
Hence, we get the value of \[{{\cos }^{2}}x+{{\cos }^{4}}x=1\] .When we compare with the options given, we find that our answer matches option (c).
Hence option (c) is correct.
Note: The alternate method of solving this question is as follows:
We know that $\begin{align}
& \sin x+{{\sin }^{2}}x=1 \\
& \Rightarrow \sin x=1-{{\sin }^{2}}x \\
& \Rightarrow \sin x={{\cos }^{2}}x \\
\end{align}$
We will put this value in ${{\cos }^{2}}x+{{\cos }^{4}}x$ . After putting the value, we get:
$y={{\cos }^{2}}x+{{\cos }^{4}}x=\sin x+{{\left( \sin x \right)}^{2}}=1$
Hence, by this method also, the answer coming is 1.
Complete step-by-step answer:
In our question, we are given that $\sin x+{{\sin }^{2}}x=1$ .We are going to use this while solving $\left[ {{\cos }^{2}}x+{{\cos }^{4}}x \right]$ part. Let us consider this equation as equation (i):
$\sin x+{{\sin }^{2}}x=1................\left( i \right)$
Now we have to solve the term ${{\cos }^{2}}x+{{\cos }^{4}}x$ and evaluate its value. Let its value be equal to y. Thus, we get:
$y=~co{{s}^{2}}x+{{\cos }^{4}}x..................\left( ii \right)$
Now, we know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ .So from this equation we will write ${{\cos }^{2}}x$ in terms of ${{\sin }^{2}}x$ i.e.
${{\cos }^{2}}x=1-{{\sin }^{2}}x................\left( iv \right)$
We will put the value of ${{\cos }^{2}}x$ from (iv) to (ii). Thus after putting we get,
$\begin{align}
& y={{\cos }^{2}}x+{{\left( {{\cos }^{2}}x \right)}^{2}} \\
& y=\left( 1-{{\sin }^{2}}x \right)+{{\left( 1-{{\sin }^{2}}x \right)}^{2}} \\
\end{align}$
We will now simplify the above equation. We know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\] . Here a = 1, $b=-{{\sin }^{2}}x$ , thus we will get:
$\begin{align}
& \Rightarrow y=\left( 1-{{\sin }^{2}}x \right)+\left[ {{\left( 1 \right)}^{2}}+{{\left( -{{\sin }^{2}}x \right)}^{2}}+2\left( 1 \right)\left( -{{\sin }^{2}}x \right) \right] \\
& \Rightarrow y=1-{{\sin }^{2}}x+\left[ 1+{{\sin }^{4}}x-2{{\sin }^{2}}x \right] \\
& \Rightarrow y=1-{{\sin }^{2}}x+1+{{\sin }^{4}}x-2{{\sin }^{2}}x \\
& \Rightarrow y=2-3{{\sin }^{2}}x+{{\sin }^{4}}x \\
& \Rightarrow y=2-4{{\sin }^{2}}x+{{\sin }^{2}}x+{{\sin }^{4}}x \\
& \Rightarrow y=2\left( 1-2{{\sin }^{2}}x \right)+\left( {{\sin }^{2}}x+{{\sin }^{4}}x \right)................\left( v \right) \\
\end{align}$ Now, we know that $\sin x+{{\sin }^{2}}x=1$ . We will square both the sides by the use of identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ where, $a=\sin x$ and $b={{\sin }^{2}}x$ .Therefore, we get
$\begin{align}
& {{\left( \sin x+{{\sin }^{2}}x \right)}^{2}}={{\left( 1 \right)}^{2}} \\
& {{\left( \sin x \right)}^{2}}+{{\left( {{\sin }^{2}}x \right)}^{2}}+2\left( \sin x \right)\left( {{\sin }^{2}}x \right)={{\left( 1 \right)}^{2}} \\
& {{\sin }^{2}}x+{{\sin }^{4}}x+2{{\sin }^{3}}x=1 \\
\end{align}$
Now, we will rearrange the terms. After rearranging we get:
${{\sin }^{2}}x+{{\sin }^{4}}x=1-2{{\sin }^{3}}x...............\left( vi \right)$
Now, we will put the value of $\left( {{\sin }^{2}}x+{{\sin }^{4}}x \right)$ from equation (vi) into equation (v). After doing this, we get:
$\begin{align}
& \Rightarrow y=2\left( 1-2{{\sin }^{2}}x \right)+1-2{{\sin }^{3}}x \\
& \Rightarrow y=2-4{{\sin }^{2}}x+1-2{{\sin }^{3}}x \\
& \Rightarrow y=3-4{{\sin }^{2}}x-2{{\sin }^{3}}x \\
& \Rightarrow y=3-2{{\sin }^{2}}x-2{{\sin }^{2}}x-2{{\sin }^{3}}x \\
& \Rightarrow y=3-2{{\sin }^{2}}x-2\left( {{\sin }^{2}}x+{{\sin }^{3}}x \right) \\
& \Rightarrow y=3-2{{\sin }^{2}}x-2\sin x\left( \sin x+{{\sin }^{2}}x \right).............\left( vii \right) \\
\end{align}$
We will put the value of $\left( \sin x+{{\sin }^{2}}x \right)$ from equation (i) to equation (vii). After doing this, we get:
$\begin{align}
& \Rightarrow y=3-2{{\sin }^{2}}x-2\sin x\left( 1 \right) \\
& \Rightarrow y=3-2{{\sin }^{2}}x-2\sin x \\
& \Rightarrow y=3-2\left( {{\sin }^{2}}x+\sin x \right)..............\left( viii \right) \\
\end{align}$
Again, we will put the value of \[\left( \sin x+{{\sin }^{2}}x \right)\] from equation (i) to equation (viii). After doing this, we will get:
$\begin{align}
& \Rightarrow y=3-2\left( 1 \right) \\
& \Rightarrow y=3-2 \\
& \Rightarrow y=1 \\
\end{align}$
Hence, we get the value of \[{{\cos }^{2}}x+{{\cos }^{4}}x=1\] .When we compare with the options given, we find that our answer matches option (c).
Hence option (c) is correct.
Note: The alternate method of solving this question is as follows:
We know that $\begin{align}
& \sin x+{{\sin }^{2}}x=1 \\
& \Rightarrow \sin x=1-{{\sin }^{2}}x \\
& \Rightarrow \sin x={{\cos }^{2}}x \\
\end{align}$
We will put this value in ${{\cos }^{2}}x+{{\cos }^{4}}x$ . After putting the value, we get:
$y={{\cos }^{2}}x+{{\cos }^{4}}x=\sin x+{{\left( \sin x \right)}^{2}}=1$
Hence, by this method also, the answer coming is 1.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

