
Consider the given expression $\sin x+{{\sin }^{2}}x=1$ , then the value of \[{{\cos }^{2}}x+{{\cos }^{4}}x\] is
(a) 0
(b) 2
(c) 1
(d) 3
Answer
606.9k+ views
Hint: In our question, we have to convert the term ${{\cos }^{2}}x+{{\cos }^{4}}x$ in terms of sine function and then we will have use $\sin x+{{\sin }^{2}}x=1$ in the modified sine function with necessary changes.
Complete step-by-step answer:
In our question, we are given that $\sin x+{{\sin }^{2}}x=1$ .We are going to use this while solving $\left[ {{\cos }^{2}}x+{{\cos }^{4}}x \right]$ part. Let us consider this equation as equation (i):
$\sin x+{{\sin }^{2}}x=1................\left( i \right)$
Now we have to solve the term ${{\cos }^{2}}x+{{\cos }^{4}}x$ and evaluate its value. Let its value be equal to y. Thus, we get:
$y=~co{{s}^{2}}x+{{\cos }^{4}}x..................\left( ii \right)$
Now, we know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ .So from this equation we will write ${{\cos }^{2}}x$ in terms of ${{\sin }^{2}}x$ i.e.
${{\cos }^{2}}x=1-{{\sin }^{2}}x................\left( iv \right)$
We will put the value of ${{\cos }^{2}}x$ from (iv) to (ii). Thus after putting we get,
$\begin{align}
& y={{\cos }^{2}}x+{{\left( {{\cos }^{2}}x \right)}^{2}} \\
& y=\left( 1-{{\sin }^{2}}x \right)+{{\left( 1-{{\sin }^{2}}x \right)}^{2}} \\
\end{align}$
We will now simplify the above equation. We know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\] . Here a = 1, $b=-{{\sin }^{2}}x$ , thus we will get:
$\begin{align}
& \Rightarrow y=\left( 1-{{\sin }^{2}}x \right)+\left[ {{\left( 1 \right)}^{2}}+{{\left( -{{\sin }^{2}}x \right)}^{2}}+2\left( 1 \right)\left( -{{\sin }^{2}}x \right) \right] \\
& \Rightarrow y=1-{{\sin }^{2}}x+\left[ 1+{{\sin }^{4}}x-2{{\sin }^{2}}x \right] \\
& \Rightarrow y=1-{{\sin }^{2}}x+1+{{\sin }^{4}}x-2{{\sin }^{2}}x \\
& \Rightarrow y=2-3{{\sin }^{2}}x+{{\sin }^{4}}x \\
& \Rightarrow y=2-4{{\sin }^{2}}x+{{\sin }^{2}}x+{{\sin }^{4}}x \\
& \Rightarrow y=2\left( 1-2{{\sin }^{2}}x \right)+\left( {{\sin }^{2}}x+{{\sin }^{4}}x \right)................\left( v \right) \\
\end{align}$ Now, we know that $\sin x+{{\sin }^{2}}x=1$ . We will square both the sides by the use of identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ where, $a=\sin x$ and $b={{\sin }^{2}}x$ .Therefore, we get
$\begin{align}
& {{\left( \sin x+{{\sin }^{2}}x \right)}^{2}}={{\left( 1 \right)}^{2}} \\
& {{\left( \sin x \right)}^{2}}+{{\left( {{\sin }^{2}}x \right)}^{2}}+2\left( \sin x \right)\left( {{\sin }^{2}}x \right)={{\left( 1 \right)}^{2}} \\
& {{\sin }^{2}}x+{{\sin }^{4}}x+2{{\sin }^{3}}x=1 \\
\end{align}$
Now, we will rearrange the terms. After rearranging we get:
${{\sin }^{2}}x+{{\sin }^{4}}x=1-2{{\sin }^{3}}x...............\left( vi \right)$
Now, we will put the value of $\left( {{\sin }^{2}}x+{{\sin }^{4}}x \right)$ from equation (vi) into equation (v). After doing this, we get:
$\begin{align}
& \Rightarrow y=2\left( 1-2{{\sin }^{2}}x \right)+1-2{{\sin }^{3}}x \\
& \Rightarrow y=2-4{{\sin }^{2}}x+1-2{{\sin }^{3}}x \\
& \Rightarrow y=3-4{{\sin }^{2}}x-2{{\sin }^{3}}x \\
& \Rightarrow y=3-2{{\sin }^{2}}x-2{{\sin }^{2}}x-2{{\sin }^{3}}x \\
& \Rightarrow y=3-2{{\sin }^{2}}x-2\left( {{\sin }^{2}}x+{{\sin }^{3}}x \right) \\
& \Rightarrow y=3-2{{\sin }^{2}}x-2\sin x\left( \sin x+{{\sin }^{2}}x \right).............\left( vii \right) \\
\end{align}$
We will put the value of $\left( \sin x+{{\sin }^{2}}x \right)$ from equation (i) to equation (vii). After doing this, we get:
$\begin{align}
& \Rightarrow y=3-2{{\sin }^{2}}x-2\sin x\left( 1 \right) \\
& \Rightarrow y=3-2{{\sin }^{2}}x-2\sin x \\
& \Rightarrow y=3-2\left( {{\sin }^{2}}x+\sin x \right)..............\left( viii \right) \\
\end{align}$
Again, we will put the value of \[\left( \sin x+{{\sin }^{2}}x \right)\] from equation (i) to equation (viii). After doing this, we will get:
$\begin{align}
& \Rightarrow y=3-2\left( 1 \right) \\
& \Rightarrow y=3-2 \\
& \Rightarrow y=1 \\
\end{align}$
Hence, we get the value of \[{{\cos }^{2}}x+{{\cos }^{4}}x=1\] .When we compare with the options given, we find that our answer matches option (c).
Hence option (c) is correct.
Note: The alternate method of solving this question is as follows:
We know that $\begin{align}
& \sin x+{{\sin }^{2}}x=1 \\
& \Rightarrow \sin x=1-{{\sin }^{2}}x \\
& \Rightarrow \sin x={{\cos }^{2}}x \\
\end{align}$
We will put this value in ${{\cos }^{2}}x+{{\cos }^{4}}x$ . After putting the value, we get:
$y={{\cos }^{2}}x+{{\cos }^{4}}x=\sin x+{{\left( \sin x \right)}^{2}}=1$
Hence, by this method also, the answer coming is 1.
Complete step-by-step answer:
In our question, we are given that $\sin x+{{\sin }^{2}}x=1$ .We are going to use this while solving $\left[ {{\cos }^{2}}x+{{\cos }^{4}}x \right]$ part. Let us consider this equation as equation (i):
$\sin x+{{\sin }^{2}}x=1................\left( i \right)$
Now we have to solve the term ${{\cos }^{2}}x+{{\cos }^{4}}x$ and evaluate its value. Let its value be equal to y. Thus, we get:
$y=~co{{s}^{2}}x+{{\cos }^{4}}x..................\left( ii \right)$
Now, we know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ .So from this equation we will write ${{\cos }^{2}}x$ in terms of ${{\sin }^{2}}x$ i.e.
${{\cos }^{2}}x=1-{{\sin }^{2}}x................\left( iv \right)$
We will put the value of ${{\cos }^{2}}x$ from (iv) to (ii). Thus after putting we get,
$\begin{align}
& y={{\cos }^{2}}x+{{\left( {{\cos }^{2}}x \right)}^{2}} \\
& y=\left( 1-{{\sin }^{2}}x \right)+{{\left( 1-{{\sin }^{2}}x \right)}^{2}} \\
\end{align}$
We will now simplify the above equation. We know that \[{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\] . Here a = 1, $b=-{{\sin }^{2}}x$ , thus we will get:
$\begin{align}
& \Rightarrow y=\left( 1-{{\sin }^{2}}x \right)+\left[ {{\left( 1 \right)}^{2}}+{{\left( -{{\sin }^{2}}x \right)}^{2}}+2\left( 1 \right)\left( -{{\sin }^{2}}x \right) \right] \\
& \Rightarrow y=1-{{\sin }^{2}}x+\left[ 1+{{\sin }^{4}}x-2{{\sin }^{2}}x \right] \\
& \Rightarrow y=1-{{\sin }^{2}}x+1+{{\sin }^{4}}x-2{{\sin }^{2}}x \\
& \Rightarrow y=2-3{{\sin }^{2}}x+{{\sin }^{4}}x \\
& \Rightarrow y=2-4{{\sin }^{2}}x+{{\sin }^{2}}x+{{\sin }^{4}}x \\
& \Rightarrow y=2\left( 1-2{{\sin }^{2}}x \right)+\left( {{\sin }^{2}}x+{{\sin }^{4}}x \right)................\left( v \right) \\
\end{align}$ Now, we know that $\sin x+{{\sin }^{2}}x=1$ . We will square both the sides by the use of identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ where, $a=\sin x$ and $b={{\sin }^{2}}x$ .Therefore, we get
$\begin{align}
& {{\left( \sin x+{{\sin }^{2}}x \right)}^{2}}={{\left( 1 \right)}^{2}} \\
& {{\left( \sin x \right)}^{2}}+{{\left( {{\sin }^{2}}x \right)}^{2}}+2\left( \sin x \right)\left( {{\sin }^{2}}x \right)={{\left( 1 \right)}^{2}} \\
& {{\sin }^{2}}x+{{\sin }^{4}}x+2{{\sin }^{3}}x=1 \\
\end{align}$
Now, we will rearrange the terms. After rearranging we get:
${{\sin }^{2}}x+{{\sin }^{4}}x=1-2{{\sin }^{3}}x...............\left( vi \right)$
Now, we will put the value of $\left( {{\sin }^{2}}x+{{\sin }^{4}}x \right)$ from equation (vi) into equation (v). After doing this, we get:
$\begin{align}
& \Rightarrow y=2\left( 1-2{{\sin }^{2}}x \right)+1-2{{\sin }^{3}}x \\
& \Rightarrow y=2-4{{\sin }^{2}}x+1-2{{\sin }^{3}}x \\
& \Rightarrow y=3-4{{\sin }^{2}}x-2{{\sin }^{3}}x \\
& \Rightarrow y=3-2{{\sin }^{2}}x-2{{\sin }^{2}}x-2{{\sin }^{3}}x \\
& \Rightarrow y=3-2{{\sin }^{2}}x-2\left( {{\sin }^{2}}x+{{\sin }^{3}}x \right) \\
& \Rightarrow y=3-2{{\sin }^{2}}x-2\sin x\left( \sin x+{{\sin }^{2}}x \right).............\left( vii \right) \\
\end{align}$
We will put the value of $\left( \sin x+{{\sin }^{2}}x \right)$ from equation (i) to equation (vii). After doing this, we get:
$\begin{align}
& \Rightarrow y=3-2{{\sin }^{2}}x-2\sin x\left( 1 \right) \\
& \Rightarrow y=3-2{{\sin }^{2}}x-2\sin x \\
& \Rightarrow y=3-2\left( {{\sin }^{2}}x+\sin x \right)..............\left( viii \right) \\
\end{align}$
Again, we will put the value of \[\left( \sin x+{{\sin }^{2}}x \right)\] from equation (i) to equation (viii). After doing this, we will get:
$\begin{align}
& \Rightarrow y=3-2\left( 1 \right) \\
& \Rightarrow y=3-2 \\
& \Rightarrow y=1 \\
\end{align}$
Hence, we get the value of \[{{\cos }^{2}}x+{{\cos }^{4}}x=1\] .When we compare with the options given, we find that our answer matches option (c).
Hence option (c) is correct.
Note: The alternate method of solving this question is as follows:
We know that $\begin{align}
& \sin x+{{\sin }^{2}}x=1 \\
& \Rightarrow \sin x=1-{{\sin }^{2}}x \\
& \Rightarrow \sin x={{\cos }^{2}}x \\
\end{align}$
We will put this value in ${{\cos }^{2}}x+{{\cos }^{4}}x$ . After putting the value, we get:
$y={{\cos }^{2}}x+{{\cos }^{4}}x=\sin x+{{\left( \sin x \right)}^{2}}=1$
Hence, by this method also, the answer coming is 1.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

