
Consider the following expression and solve it accordingly:
\[\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...........\dfrac{1}{\left( 3n-1 \right).\left( 3n+2 \right)}\]
Answer
569.1k+ views
Hint: First consider the given expression as some function or represent by a particular notation. Then calculate the value of the given expression in both left hand side and right hand side for n=1. Now assume the total sum \[S\left( n \right)\]by some expression\[n(k)\]. Then we have to prove that the given expression also holds good for \[n=k+1\].
Complete step by step answer:
Let \[S\left( n \right)=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...........\dfrac{1}{\left( 3n-1 \right).\left( 3n+2 \right)}\]
Step-1
Prove \[S\left( n \right)\]for n=1
L.H.S=\[=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...........\dfrac{1}{\left( 3\left( 1 \right)-1 \right).\left( 3\left( 1 \right)+2 \right)}\]
\[=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...........\dfrac{1}{2.5}\]
L. H. S\[=\dfrac{1}{2.5}=\dfrac{1}{10}\]. . . . . . . . . . . . . . . . . . . . (1)
R. H. S\[=\dfrac{1}{2.5}=\dfrac{1}{10}\]. . . . . . . . . . . . . . . . . . . . (2)
So the given expression is true for n=1.
Step-2
Assume that \[S\left( n \right)\]is true for some \[n(k)\]
\[\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...........\dfrac{1}{\left( 3k-1 \right).\left( 3k+2 \right)}=\dfrac{k}{6k+4}\]. . . . . . . . . . . . . . . . . . (3)
Step-3
Prove \[S\left( n \right)\]for \[n=k+1\]
L. H. S\[=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...........\dfrac{1}{\left( 3\left( k+1 \right)-1 \right).\left( 3\left( k+1 \right)+2 \right)}\]
\[=\dfrac{k}{2(3k+2)}+\dfrac{1}{\left( 3k+2 \right).\left( 3k+5 \right)}\]. . . . . . . . . . . . . . . . . . . . . . . (4)
\[\begin{align}
& =\dfrac{3{{k}^{2}}+5k+2}{2\left( 3k+2 \right).\left( 3k+5 \right)} \\
& =\dfrac{\left( 3k+2 \right)\left( k+1 \right)}{2\left( 3k+2 \right).\left( 3k+5 \right)} \\
& =\dfrac{k+1}{6k+10} \\
\end{align}\]
So the given expression is also true for \[n=k+1\]
Note:
For this type of problem we have to use the principle of mathematical induction to solve the given expression. The principle of mathematical induction states that if S be a conjecture involving a positive integer n. S is true for all positive integers if the following conditions hold good.
S is true for n=1
If S is true for n=k
6. Then S should also be true for n=k+1
Complete step by step answer:
Let \[S\left( n \right)=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...........\dfrac{1}{\left( 3n-1 \right).\left( 3n+2 \right)}\]
Step-1
Prove \[S\left( n \right)\]for n=1
L.H.S=\[=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...........\dfrac{1}{\left( 3\left( 1 \right)-1 \right).\left( 3\left( 1 \right)+2 \right)}\]
\[=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...........\dfrac{1}{2.5}\]
L. H. S\[=\dfrac{1}{2.5}=\dfrac{1}{10}\]. . . . . . . . . . . . . . . . . . . . (1)
R. H. S\[=\dfrac{1}{2.5}=\dfrac{1}{10}\]. . . . . . . . . . . . . . . . . . . . (2)
So the given expression is true for n=1.
Step-2
Assume that \[S\left( n \right)\]is true for some \[n(k)\]
\[\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...........\dfrac{1}{\left( 3k-1 \right).\left( 3k+2 \right)}=\dfrac{k}{6k+4}\]. . . . . . . . . . . . . . . . . . (3)
Step-3
Prove \[S\left( n \right)\]for \[n=k+1\]
L. H. S\[=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...........\dfrac{1}{\left( 3\left( k+1 \right)-1 \right).\left( 3\left( k+1 \right)+2 \right)}\]
\[=\dfrac{k}{2(3k+2)}+\dfrac{1}{\left( 3k+2 \right).\left( 3k+5 \right)}\]. . . . . . . . . . . . . . . . . . . . . . . (4)
\[\begin{align}
& =\dfrac{3{{k}^{2}}+5k+2}{2\left( 3k+2 \right).\left( 3k+5 \right)} \\
& =\dfrac{\left( 3k+2 \right)\left( k+1 \right)}{2\left( 3k+2 \right).\left( 3k+5 \right)} \\
& =\dfrac{k+1}{6k+10} \\
\end{align}\]
So the given expression is also true for \[n=k+1\]
Note:
For this type of problem we have to use the principle of mathematical induction to solve the given expression. The principle of mathematical induction states that if S be a conjecture involving a positive integer n. S is true for all positive integers if the following conditions hold good.
S is true for n=1
If S is true for n=k
6. Then S should also be true for n=k+1
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

