
Consider that two series are given as $ {{S}_{n}}={{1}^{3}}+{{2}^{3}}+{{3}^{3}}+...........+{{n}^{3}} $ and $ {{T}_{n}}=1+2+3+..........+n $ , then:
1. $ {{S}_{n}}={{T}_{n}} $
2. $ {{S}_{n}}=T_{n}^{4} $
3. $ {{S}_{n}}=T_{n}^{2} $
4. $ {{S}_{n}}=T_{n}^{3} $
Answer
588k+ views
Hint: Use the formula of the sum of all the cubes of n natural number (i.e. $ {{1}^{3}}+{{2}^{3}}+{{3}^{3}}+...........+{{n}^{3}} $ ) is $ \sum\limits_{a=1}^{n}{{{a}^{3}}}={{\left\{ \dfrac{n\left( n+1 \right)}{2} \right\}}^{2}} $ and also use the formula of the sum of the n number which are in arithmetic progression , that is $ \begin{align}
& {{T}_{n}}=\dfrac{n}{2}\left( 2(1)+(n-1)(1) \right) \\
& \\
\end{align} $ , where , a = first term and d is the common difference, to find the sum of $ {{T}_{n}}=1+2+3+..........+n $ and try to relate their sum.
Complete step-by-step answer:
It is given in the question that $ {{S}_{n}}={{1}^{3}}+{{2}^{3}}+{{3}^{3}}+...........+{{n}^{3}} $ , then by using the formula of sum of the cube of n natural number (i.e. $ \sum\limits_{a=1}^{n}{{{a}^{3}}}={{\left\{ \dfrac{n\left( n+1 \right)}{2} \right\}}^{2}} $ ), we can write $ {{S}_{n}} $ as:
$ \sum\limits_{a=1}^{n}{{{a}^{3}}}={{1}^{3}}+{{2}^{3}}+{{3}^{3}}+...........+{{n}^{3}}={{\left\{ \dfrac{n\left( n+1 \right)}{2} \right\}}^{2}} $
In the question it is given that
$ {{1}^{3}}+{{2}^{3}}+{{3}^{3}}+...........+{{n}^{3}}={{S}_{n}} $
Hence, $ {{S}_{n}}={{\left\{ \dfrac{n(n+1)}{2} \right\}}^{2}}.....................(1) $
Now, $ {{T}_{n}}=1+2+3+..........+n $ , is an arithmetic progression in which the common difference is ‘1’ and the first term is ‘1’.
Hence, by using the formula of the Summation of first n term of the arithmetic progression, that is
$ \begin{align}
& {{T}_{n}}=\dfrac{n}{2}\left( 2a+(n-1)d \right)..........(2) \\
& \\
\end{align} $ , where $ {{T}_{n}} $ will be the sum of n numbers which are in arithmetic progression.
Here, a = first term = 1
d = common difference = 1
Hence, by putting value of a and d in equation (2) we will get:
$ \begin{align}
& {{T}_{n}}=\dfrac{n}{2}\left( 2(1)+(n-1)(1) \right) \\
& \\
\end{align} $ $ \begin{align}
& {{T}_{n}}=\dfrac{n(n+1)}{2}.....................(3) \\
& \\
\end{align} $
Now, by putting the value of equation (1) in equation (3), that is we will put $ {{T}_{n}} $ in place of $ \dfrac{n(n+1)}{2} $ in equation (1), we will get:
$ {{S}_{n}}={{\left( {{T}_{n}} \right)}^{2}} $
Hence, $ {{S}_{n}}=T_{n}^{2} $
Hence, option 3 is our required answer.
Note: The above solution can also be found by directly using the formula of the sum of the n natural number (i.e. $ 1+2+3+..........+n $ ) is $ \sum\limits_{a=1}^{n}{a}=\dfrac{n(n+1)}{2} $ and put its value in sum of the cube of n natural number, (i.e. $ {{1}^{3}}+{{2}^{3}}+{{3}^{3}}+...........+{{n}^{3}} $ ) is $ \sum\limits_{a=1}^{n}{{{a}^{3}}}={{\left\{ \dfrac{n\left( n+1 \right)}{2} \right\}}^{2}} $ .
& {{T}_{n}}=\dfrac{n}{2}\left( 2(1)+(n-1)(1) \right) \\
& \\
\end{align} $ , where , a = first term and d is the common difference, to find the sum of $ {{T}_{n}}=1+2+3+..........+n $ and try to relate their sum.
Complete step-by-step answer:
It is given in the question that $ {{S}_{n}}={{1}^{3}}+{{2}^{3}}+{{3}^{3}}+...........+{{n}^{3}} $ , then by using the formula of sum of the cube of n natural number (i.e. $ \sum\limits_{a=1}^{n}{{{a}^{3}}}={{\left\{ \dfrac{n\left( n+1 \right)}{2} \right\}}^{2}} $ ), we can write $ {{S}_{n}} $ as:
$ \sum\limits_{a=1}^{n}{{{a}^{3}}}={{1}^{3}}+{{2}^{3}}+{{3}^{3}}+...........+{{n}^{3}}={{\left\{ \dfrac{n\left( n+1 \right)}{2} \right\}}^{2}} $
In the question it is given that
$ {{1}^{3}}+{{2}^{3}}+{{3}^{3}}+...........+{{n}^{3}}={{S}_{n}} $
Hence, $ {{S}_{n}}={{\left\{ \dfrac{n(n+1)}{2} \right\}}^{2}}.....................(1) $
Now, $ {{T}_{n}}=1+2+3+..........+n $ , is an arithmetic progression in which the common difference is ‘1’ and the first term is ‘1’.
Hence, by using the formula of the Summation of first n term of the arithmetic progression, that is
$ \begin{align}
& {{T}_{n}}=\dfrac{n}{2}\left( 2a+(n-1)d \right)..........(2) \\
& \\
\end{align} $ , where $ {{T}_{n}} $ will be the sum of n numbers which are in arithmetic progression.
Here, a = first term = 1
d = common difference = 1
Hence, by putting value of a and d in equation (2) we will get:
$ \begin{align}
& {{T}_{n}}=\dfrac{n}{2}\left( 2(1)+(n-1)(1) \right) \\
& \\
\end{align} $ $ \begin{align}
& {{T}_{n}}=\dfrac{n(n+1)}{2}.....................(3) \\
& \\
\end{align} $
Now, by putting the value of equation (1) in equation (3), that is we will put $ {{T}_{n}} $ in place of $ \dfrac{n(n+1)}{2} $ in equation (1), we will get:
$ {{S}_{n}}={{\left( {{T}_{n}} \right)}^{2}} $
Hence, $ {{S}_{n}}=T_{n}^{2} $
Hence, option 3 is our required answer.
Note: The above solution can also be found by directly using the formula of the sum of the n natural number (i.e. $ 1+2+3+..........+n $ ) is $ \sum\limits_{a=1}^{n}{a}=\dfrac{n(n+1)}{2} $ and put its value in sum of the cube of n natural number, (i.e. $ {{1}^{3}}+{{2}^{3}}+{{3}^{3}}+...........+{{n}^{3}} $ ) is $ \sum\limits_{a=1}^{n}{{{a}^{3}}}={{\left\{ \dfrac{n\left( n+1 \right)}{2} \right\}}^{2}} $ .
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

