
Consider a parallel plate capacitor of capacity $ 10\mu F $ with air filled in the gap between the plates. Now, one-half of the space between the plates is filled with a dielectric constant $ 4 $ as shown in the figure. The capacity of capacitor changes to:
A. $ 25\mu F $
B. $ 20\mu F $
C. $ 40\mu F $
D. $ 5\mu F $
Answer
591.3k+ views
Hint: Dielectrics in capacitors are used to keep the conducting plates from coming in contact resulting in smaller plate separations and higher capacitance. Dielectrics increase the effective capacitance by reducing the electric field strength. We can find the final capacitance of the combination by considering it as a parallel combination of two capacitors having different values of capacitance.
Formulae used:
$ C=\dfrac{{{\varepsilon }_{o}}A}{d} $
$ K=\dfrac{\varepsilon }{{{\varepsilon }_{o}}} $
Complete step-by-step answer:
When a dielectric is inserted into a charged capacitor, the dielectric gets polarized by the electric field present between capacitor plates. The electric field from the dielectric will partially cancel the electric field in the capacitor plates. Adding a dielectric into a capacitor allows the capacitor to store more charge for a specified value of voltage.
The dielectric constant $ K $ of a material is the ratio of its permittivity $ \varepsilon $ to the permittivity of vacuum $ {{\varepsilon }_{o}} $ . Therefore, $K=\dfrac{\varepsilon }{{{\varepsilon }_{o}}}$. The dielectric constant of a material is also known as the relative permittivity of the material. Also, dielectric constant, being a ratio of two similar quantities, is a dimensionless quantity.
For the above set of preparation, let’s take the area of capacitor plates as $ A $ and the length of capacitor, distance between two plates, as $ d $ . As the dielectric is inserted between the capacitor plates, covering one half of the original space between plates, we can consider this configuration as a parallel combination of two capacitors. The one is with area $ \dfrac{A}{2} $ and having dielectric between its plates and the other one with area $ \dfrac{A}{2} $ and without the dielectric being inserted between its plates.
For capacitors in parallel combination, the resultant capacitance is the sum of individual capacitances
$ C={{C}_{1}}+{{C}_{2}} $
Capacitance of half area of original capacitor without dielectric, being air in between the plates, $ {{C}_{1}}=\dfrac{{{\varepsilon }_{o}}A}{2d} $
The capacitance of a capacitor having dielectric of dielectric constant $ K $ in between its plates is given as $ {{C}_{K}}=KC $ where $ C $ is the capacitance of capacitor with air in between its plates
Capacitance of half area of capacitor having dielectric between its plates, $ {{C}_{2}}=\dfrac{4{{\varepsilon }_{o}}A}{2d} $
The effective capacitance of the combination is $ C={{C}_{1}}+{{C}_{2}} $
$ \begin{align}
& C=\dfrac{{{\varepsilon }_{o}}A}{2d}+\dfrac{4{{\varepsilon }_{o}}A}{2d} \\
& C=\dfrac{5{{\varepsilon }_{o}}A}{2d} \\
\end{align} $
Initial capacitance of capacitor is given as $ 10\mu F $ , that is, $ \dfrac{{{\varepsilon }_{o}}A}{d}=10 $
$ \begin{align}
& C=\dfrac{5}{2}\times 10=25 \\
& C=25\mu F \\
\end{align} $
Resultant capacitance of the combination is $ 25\mu F $
Hence, the correct option is A.
Note: Students should remember the formula for resultant capacitance in series and parallel combination. The formula in case of capacitors is opposite to that of resistors.
Formulae used:
$ C=\dfrac{{{\varepsilon }_{o}}A}{d} $
$ K=\dfrac{\varepsilon }{{{\varepsilon }_{o}}} $
Complete step-by-step answer:
When a dielectric is inserted into a charged capacitor, the dielectric gets polarized by the electric field present between capacitor plates. The electric field from the dielectric will partially cancel the electric field in the capacitor plates. Adding a dielectric into a capacitor allows the capacitor to store more charge for a specified value of voltage.
The dielectric constant $ K $ of a material is the ratio of its permittivity $ \varepsilon $ to the permittivity of vacuum $ {{\varepsilon }_{o}} $ . Therefore, $K=\dfrac{\varepsilon }{{{\varepsilon }_{o}}}$. The dielectric constant of a material is also known as the relative permittivity of the material. Also, dielectric constant, being a ratio of two similar quantities, is a dimensionless quantity.
For the above set of preparation, let’s take the area of capacitor plates as $ A $ and the length of capacitor, distance between two plates, as $ d $ . As the dielectric is inserted between the capacitor plates, covering one half of the original space between plates, we can consider this configuration as a parallel combination of two capacitors. The one is with area $ \dfrac{A}{2} $ and having dielectric between its plates and the other one with area $ \dfrac{A}{2} $ and without the dielectric being inserted between its plates.
For capacitors in parallel combination, the resultant capacitance is the sum of individual capacitances
$ C={{C}_{1}}+{{C}_{2}} $
Capacitance of half area of original capacitor without dielectric, being air in between the plates, $ {{C}_{1}}=\dfrac{{{\varepsilon }_{o}}A}{2d} $
The capacitance of a capacitor having dielectric of dielectric constant $ K $ in between its plates is given as $ {{C}_{K}}=KC $ where $ C $ is the capacitance of capacitor with air in between its plates
Capacitance of half area of capacitor having dielectric between its plates, $ {{C}_{2}}=\dfrac{4{{\varepsilon }_{o}}A}{2d} $
The effective capacitance of the combination is $ C={{C}_{1}}+{{C}_{2}} $
$ \begin{align}
& C=\dfrac{{{\varepsilon }_{o}}A}{2d}+\dfrac{4{{\varepsilon }_{o}}A}{2d} \\
& C=\dfrac{5{{\varepsilon }_{o}}A}{2d} \\
\end{align} $
Initial capacitance of capacitor is given as $ 10\mu F $ , that is, $ \dfrac{{{\varepsilon }_{o}}A}{d}=10 $
$ \begin{align}
& C=\dfrac{5}{2}\times 10=25 \\
& C=25\mu F \\
\end{align} $
Resultant capacitance of the combination is $ 25\mu F $
Hence, the correct option is A.
Note: Students should remember the formula for resultant capacitance in series and parallel combination. The formula in case of capacitors is opposite to that of resistors.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

