
Consider a body of mass 1.0kg at rest at the origin at time t=0. A force $\overrightarrow F = \alpha t\widehat i + \beta \widehat j$ is applied on the body, where α=1.0N/s and β=1.0N. The torque acting on the body about the origin at time t=1.0s is τ. Which of the following statements is (are) true?
A. $\left| {\vec \tau } \right| = \dfrac{1}{3}N.m$
B. The torque $\vec \tau $is in the direction of unit vector $ + \widehat k$
C. Velocity of the body at t= 1sec is $\overrightarrow v = \dfrac{1}{2}(\widehat i + 2\widehat j)$m/s
D. The magnitude of displacement of the body at t= 1s is $\dfrac{1}{6}m$
Answer
565.2k+ views
Hint: From the vector form of 2nd law of Newton,$\overrightarrow F = m\overrightarrow a = m\dfrac{{d\overrightarrow v }}{{dt}}$ and we know,$\overrightarrow v = \dfrac{{d\overrightarrow r }}{{dt}}$
From the definition of torque,$\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F )$
Where, $\overrightarrow \tau = $torque acting on the body
$\overrightarrow F = $Force acting on the body
$\overrightarrow r = $Displacement of the body
$\overrightarrow v = $Velocity of the body
$m = $Mass of the body
Using these two equations we will come to the solution of the above problem.
Complete step by step answer:
Mass of the body, $m = 1kg$
At $t = 0s,\overrightarrow v = 0,\overrightarrow r = 0$
Also,$\overrightarrow F = \alpha t\widehat i + \beta \widehat j$, $\alpha = 1N/s,\beta = 1N$
So, $\overrightarrow F = t\widehat i + \widehat j$
From Newton’s second law,$\overrightarrow F = m\overrightarrow a = m\dfrac{{d\overrightarrow v }}{{dt}}$
Now, $m\dfrac{{d\overrightarrow v }}{{dt}} = t\widehat i + \widehat j$\[\]
Or, $md\overrightarrow v = (t\widehat i + \widehat j)dt$
Integrating both sides,$m\int\limits_{v = 0}^{v = \overrightarrow v } {d\overrightarrow v = \int\limits_{t = 0}^{t = t} {(t\widehat i + \widehat j)dt} } $
Or, $\overrightarrow v = \dfrac{{{t^2}}}{2}\widehat i + t\widehat j[\because m = 1kg]$
Or,$\dfrac{{d\overrightarrow r }}{{dt}} = \dfrac{{{t^2}}}{2}\widehat i + t\widehat j$
Or,$d\overrightarrow r = (\dfrac{{{t^2}}}{2}\widehat i + t\widehat j)dt$
Integrating both sides, $\int\limits_{r = 0}^{r = \overrightarrow r } {d\overrightarrow r = \int\limits_{t = 0}^{t = t} {\left( {\dfrac{{{t^2}}}{2}\widehat i + t\widehat j} \right)} dt} $
Or, $\overrightarrow r = \dfrac{{{t^3}}}{6}\widehat i + \dfrac{{{t^2}}}{2}\widehat j$
At t= 1sec,
$\overrightarrow r = \dfrac{{{1^3}}}{6}\widehat i + \dfrac{{{1^2}}}{2}\widehat j = \dfrac{1}{6}\widehat i + \dfrac{1}{2}\widehat j$
$\overrightarrow v = \dfrac{{{1^2}}}{2}\widehat i + 1\widehat j = \dfrac{1}{2}\widehat i + 1\widehat j = \dfrac{1}{2}(\widehat i + 2\widehat j)$………………………….(1)
$\overrightarrow F = \widehat i + \widehat j$
$
\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F ) \\
= (\dfrac{1}{6}\widehat i + \dfrac{1}{2}\widehat j) \times (\widehat i + \widehat j) \\
= (\dfrac{1}{6} - \dfrac{1}{2})\widehat k \\
= - \dfrac{1}{3}\widehat k................................(2) \\
$
$\left| {\overrightarrow r } \right| = \sqrt {{{(\dfrac{1}{6})}^2} + {{(\dfrac{1}{2})}^2}} = \dfrac{{\sqrt {10} }}{6}$……………………………………(3)
Now, from (2) it is clear that at t= 1sec, $|\overrightarrow \tau | = \dfrac{1}{3}$.
So, option (A) is correct.
Direction of $\overrightarrow \tau $is towards unit vector $ - \widehat k$from (2)
So, option (B) is incorrect.
From (1), Velocity of the body at t= 1sec is $\overrightarrow v = \dfrac{1}{2}(\widehat i + 2\widehat j)$m/s
So, option (C) is correct.
From (3), the magnitude of displacement of the body at t= 1s is $\dfrac{{\sqrt {10} }}{6}m$
So, option (D) is incorrect.
So, the correct answers are “Options A and C”.
Note:
It is to be noted that, $\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F )$. $(\overrightarrow r \times \overrightarrow F ) \ne (\overrightarrow F \times \overrightarrow r )$. So, $\overrightarrow \tau \ne (\overrightarrow F \times \overrightarrow r )$.
If the body is not at rest initially and let have a speed of $\overrightarrow {{v_1}} $, then limits of the integration will change, like,$m\int\limits_{v = \overrightarrow {{v_1}} }^{v = \overrightarrow v } {d\overrightarrow v = \int\limits_{t = 0}^{t = t} {(t\widehat i + \widehat j)dt} } $.
From the definition of torque,$\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F )$
Where, $\overrightarrow \tau = $torque acting on the body
$\overrightarrow F = $Force acting on the body
$\overrightarrow r = $Displacement of the body
$\overrightarrow v = $Velocity of the body
$m = $Mass of the body
Using these two equations we will come to the solution of the above problem.
Complete step by step answer:
Mass of the body, $m = 1kg$
At $t = 0s,\overrightarrow v = 0,\overrightarrow r = 0$
Also,$\overrightarrow F = \alpha t\widehat i + \beta \widehat j$, $\alpha = 1N/s,\beta = 1N$
So, $\overrightarrow F = t\widehat i + \widehat j$
From Newton’s second law,$\overrightarrow F = m\overrightarrow a = m\dfrac{{d\overrightarrow v }}{{dt}}$
Now, $m\dfrac{{d\overrightarrow v }}{{dt}} = t\widehat i + \widehat j$\[\]
Or, $md\overrightarrow v = (t\widehat i + \widehat j)dt$
Integrating both sides,$m\int\limits_{v = 0}^{v = \overrightarrow v } {d\overrightarrow v = \int\limits_{t = 0}^{t = t} {(t\widehat i + \widehat j)dt} } $
Or, $\overrightarrow v = \dfrac{{{t^2}}}{2}\widehat i + t\widehat j[\because m = 1kg]$
Or,$\dfrac{{d\overrightarrow r }}{{dt}} = \dfrac{{{t^2}}}{2}\widehat i + t\widehat j$
Or,$d\overrightarrow r = (\dfrac{{{t^2}}}{2}\widehat i + t\widehat j)dt$
Integrating both sides, $\int\limits_{r = 0}^{r = \overrightarrow r } {d\overrightarrow r = \int\limits_{t = 0}^{t = t} {\left( {\dfrac{{{t^2}}}{2}\widehat i + t\widehat j} \right)} dt} $
Or, $\overrightarrow r = \dfrac{{{t^3}}}{6}\widehat i + \dfrac{{{t^2}}}{2}\widehat j$
At t= 1sec,
$\overrightarrow r = \dfrac{{{1^3}}}{6}\widehat i + \dfrac{{{1^2}}}{2}\widehat j = \dfrac{1}{6}\widehat i + \dfrac{1}{2}\widehat j$
$\overrightarrow v = \dfrac{{{1^2}}}{2}\widehat i + 1\widehat j = \dfrac{1}{2}\widehat i + 1\widehat j = \dfrac{1}{2}(\widehat i + 2\widehat j)$………………………….(1)
$\overrightarrow F = \widehat i + \widehat j$
$
\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F ) \\
= (\dfrac{1}{6}\widehat i + \dfrac{1}{2}\widehat j) \times (\widehat i + \widehat j) \\
= (\dfrac{1}{6} - \dfrac{1}{2})\widehat k \\
= - \dfrac{1}{3}\widehat k................................(2) \\
$
$\left| {\overrightarrow r } \right| = \sqrt {{{(\dfrac{1}{6})}^2} + {{(\dfrac{1}{2})}^2}} = \dfrac{{\sqrt {10} }}{6}$……………………………………(3)
Now, from (2) it is clear that at t= 1sec, $|\overrightarrow \tau | = \dfrac{1}{3}$.
So, option (A) is correct.
Direction of $\overrightarrow \tau $is towards unit vector $ - \widehat k$from (2)
So, option (B) is incorrect.
From (1), Velocity of the body at t= 1sec is $\overrightarrow v = \dfrac{1}{2}(\widehat i + 2\widehat j)$m/s
So, option (C) is correct.
From (3), the magnitude of displacement of the body at t= 1s is $\dfrac{{\sqrt {10} }}{6}m$
So, option (D) is incorrect.
So, the correct answers are “Options A and C”.
Note:
It is to be noted that, $\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F )$. $(\overrightarrow r \times \overrightarrow F ) \ne (\overrightarrow F \times \overrightarrow r )$. So, $\overrightarrow \tau \ne (\overrightarrow F \times \overrightarrow r )$.
If the body is not at rest initially and let have a speed of $\overrightarrow {{v_1}} $, then limits of the integration will change, like,$m\int\limits_{v = \overrightarrow {{v_1}} }^{v = \overrightarrow v } {d\overrightarrow v = \int\limits_{t = 0}^{t = t} {(t\widehat i + \widehat j)dt} } $.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

