
Consider a body of mass 1.0kg at rest at the origin at time t=0. A force $\overrightarrow F = \alpha t\widehat i + \beta \widehat j$ is applied on the body, where α=1.0N/s and β=1.0N. The torque acting on the body about the origin at time t=1.0s is τ. Which of the following statements is (are) true?
A. $\left| {\vec \tau } \right| = \dfrac{1}{3}N.m$
B. The torque $\vec \tau $is in the direction of unit vector $ + \widehat k$
C. Velocity of the body at t= 1sec is $\overrightarrow v = \dfrac{1}{2}(\widehat i + 2\widehat j)$m/s
D. The magnitude of displacement of the body at t= 1s is $\dfrac{1}{6}m$
Answer
564.3k+ views
Hint: From the vector form of 2nd law of Newton,$\overrightarrow F = m\overrightarrow a = m\dfrac{{d\overrightarrow v }}{{dt}}$ and we know,$\overrightarrow v = \dfrac{{d\overrightarrow r }}{{dt}}$
From the definition of torque,$\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F )$
Where, $\overrightarrow \tau = $torque acting on the body
$\overrightarrow F = $Force acting on the body
$\overrightarrow r = $Displacement of the body
$\overrightarrow v = $Velocity of the body
$m = $Mass of the body
Using these two equations we will come to the solution of the above problem.
Complete step by step answer:
Mass of the body, $m = 1kg$
At $t = 0s,\overrightarrow v = 0,\overrightarrow r = 0$
Also,$\overrightarrow F = \alpha t\widehat i + \beta \widehat j$, $\alpha = 1N/s,\beta = 1N$
So, $\overrightarrow F = t\widehat i + \widehat j$
From Newton’s second law,$\overrightarrow F = m\overrightarrow a = m\dfrac{{d\overrightarrow v }}{{dt}}$
Now, $m\dfrac{{d\overrightarrow v }}{{dt}} = t\widehat i + \widehat j$\[\]
Or, $md\overrightarrow v = (t\widehat i + \widehat j)dt$
Integrating both sides,$m\int\limits_{v = 0}^{v = \overrightarrow v } {d\overrightarrow v = \int\limits_{t = 0}^{t = t} {(t\widehat i + \widehat j)dt} } $
Or, $\overrightarrow v = \dfrac{{{t^2}}}{2}\widehat i + t\widehat j[\because m = 1kg]$
Or,$\dfrac{{d\overrightarrow r }}{{dt}} = \dfrac{{{t^2}}}{2}\widehat i + t\widehat j$
Or,$d\overrightarrow r = (\dfrac{{{t^2}}}{2}\widehat i + t\widehat j)dt$
Integrating both sides, $\int\limits_{r = 0}^{r = \overrightarrow r } {d\overrightarrow r = \int\limits_{t = 0}^{t = t} {\left( {\dfrac{{{t^2}}}{2}\widehat i + t\widehat j} \right)} dt} $
Or, $\overrightarrow r = \dfrac{{{t^3}}}{6}\widehat i + \dfrac{{{t^2}}}{2}\widehat j$
At t= 1sec,
$\overrightarrow r = \dfrac{{{1^3}}}{6}\widehat i + \dfrac{{{1^2}}}{2}\widehat j = \dfrac{1}{6}\widehat i + \dfrac{1}{2}\widehat j$
$\overrightarrow v = \dfrac{{{1^2}}}{2}\widehat i + 1\widehat j = \dfrac{1}{2}\widehat i + 1\widehat j = \dfrac{1}{2}(\widehat i + 2\widehat j)$………………………….(1)
$\overrightarrow F = \widehat i + \widehat j$
$
\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F ) \\
= (\dfrac{1}{6}\widehat i + \dfrac{1}{2}\widehat j) \times (\widehat i + \widehat j) \\
= (\dfrac{1}{6} - \dfrac{1}{2})\widehat k \\
= - \dfrac{1}{3}\widehat k................................(2) \\
$
$\left| {\overrightarrow r } \right| = \sqrt {{{(\dfrac{1}{6})}^2} + {{(\dfrac{1}{2})}^2}} = \dfrac{{\sqrt {10} }}{6}$……………………………………(3)
Now, from (2) it is clear that at t= 1sec, $|\overrightarrow \tau | = \dfrac{1}{3}$.
So, option (A) is correct.
Direction of $\overrightarrow \tau $is towards unit vector $ - \widehat k$from (2)
So, option (B) is incorrect.
From (1), Velocity of the body at t= 1sec is $\overrightarrow v = \dfrac{1}{2}(\widehat i + 2\widehat j)$m/s
So, option (C) is correct.
From (3), the magnitude of displacement of the body at t= 1s is $\dfrac{{\sqrt {10} }}{6}m$
So, option (D) is incorrect.
So, the correct answers are “Options A and C”.
Note:
It is to be noted that, $\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F )$. $(\overrightarrow r \times \overrightarrow F ) \ne (\overrightarrow F \times \overrightarrow r )$. So, $\overrightarrow \tau \ne (\overrightarrow F \times \overrightarrow r )$.
If the body is not at rest initially and let have a speed of $\overrightarrow {{v_1}} $, then limits of the integration will change, like,$m\int\limits_{v = \overrightarrow {{v_1}} }^{v = \overrightarrow v } {d\overrightarrow v = \int\limits_{t = 0}^{t = t} {(t\widehat i + \widehat j)dt} } $.
From the definition of torque,$\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F )$
Where, $\overrightarrow \tau = $torque acting on the body
$\overrightarrow F = $Force acting on the body
$\overrightarrow r = $Displacement of the body
$\overrightarrow v = $Velocity of the body
$m = $Mass of the body
Using these two equations we will come to the solution of the above problem.
Complete step by step answer:
Mass of the body, $m = 1kg$
At $t = 0s,\overrightarrow v = 0,\overrightarrow r = 0$
Also,$\overrightarrow F = \alpha t\widehat i + \beta \widehat j$, $\alpha = 1N/s,\beta = 1N$
So, $\overrightarrow F = t\widehat i + \widehat j$
From Newton’s second law,$\overrightarrow F = m\overrightarrow a = m\dfrac{{d\overrightarrow v }}{{dt}}$
Now, $m\dfrac{{d\overrightarrow v }}{{dt}} = t\widehat i + \widehat j$\[\]
Or, $md\overrightarrow v = (t\widehat i + \widehat j)dt$
Integrating both sides,$m\int\limits_{v = 0}^{v = \overrightarrow v } {d\overrightarrow v = \int\limits_{t = 0}^{t = t} {(t\widehat i + \widehat j)dt} } $
Or, $\overrightarrow v = \dfrac{{{t^2}}}{2}\widehat i + t\widehat j[\because m = 1kg]$
Or,$\dfrac{{d\overrightarrow r }}{{dt}} = \dfrac{{{t^2}}}{2}\widehat i + t\widehat j$
Or,$d\overrightarrow r = (\dfrac{{{t^2}}}{2}\widehat i + t\widehat j)dt$
Integrating both sides, $\int\limits_{r = 0}^{r = \overrightarrow r } {d\overrightarrow r = \int\limits_{t = 0}^{t = t} {\left( {\dfrac{{{t^2}}}{2}\widehat i + t\widehat j} \right)} dt} $
Or, $\overrightarrow r = \dfrac{{{t^3}}}{6}\widehat i + \dfrac{{{t^2}}}{2}\widehat j$
At t= 1sec,
$\overrightarrow r = \dfrac{{{1^3}}}{6}\widehat i + \dfrac{{{1^2}}}{2}\widehat j = \dfrac{1}{6}\widehat i + \dfrac{1}{2}\widehat j$
$\overrightarrow v = \dfrac{{{1^2}}}{2}\widehat i + 1\widehat j = \dfrac{1}{2}\widehat i + 1\widehat j = \dfrac{1}{2}(\widehat i + 2\widehat j)$………………………….(1)
$\overrightarrow F = \widehat i + \widehat j$
$
\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F ) \\
= (\dfrac{1}{6}\widehat i + \dfrac{1}{2}\widehat j) \times (\widehat i + \widehat j) \\
= (\dfrac{1}{6} - \dfrac{1}{2})\widehat k \\
= - \dfrac{1}{3}\widehat k................................(2) \\
$
$\left| {\overrightarrow r } \right| = \sqrt {{{(\dfrac{1}{6})}^2} + {{(\dfrac{1}{2})}^2}} = \dfrac{{\sqrt {10} }}{6}$……………………………………(3)
Now, from (2) it is clear that at t= 1sec, $|\overrightarrow \tau | = \dfrac{1}{3}$.
So, option (A) is correct.
Direction of $\overrightarrow \tau $is towards unit vector $ - \widehat k$from (2)
So, option (B) is incorrect.
From (1), Velocity of the body at t= 1sec is $\overrightarrow v = \dfrac{1}{2}(\widehat i + 2\widehat j)$m/s
So, option (C) is correct.
From (3), the magnitude of displacement of the body at t= 1s is $\dfrac{{\sqrt {10} }}{6}m$
So, option (D) is incorrect.
So, the correct answers are “Options A and C”.
Note:
It is to be noted that, $\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F )$. $(\overrightarrow r \times \overrightarrow F ) \ne (\overrightarrow F \times \overrightarrow r )$. So, $\overrightarrow \tau \ne (\overrightarrow F \times \overrightarrow r )$.
If the body is not at rest initially and let have a speed of $\overrightarrow {{v_1}} $, then limits of the integration will change, like,$m\int\limits_{v = \overrightarrow {{v_1}} }^{v = \overrightarrow v } {d\overrightarrow v = \int\limits_{t = 0}^{t = t} {(t\widehat i + \widehat j)dt} } $.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

