
How do you condense $ \ln \left( 8 \right) - \ln \left( x \right) $ ?
Answer
543.9k+ views
Hint: In the above question, we are given a difference of two functions and we have to find their value, the given functions are logarithmic functions. So to solve this question, we must know what logarithm functions are. A logarithm function is the inverse of an exponential function (a function in which one term is raised to the power of another term is known as an exponential function). An exponential function is of the form $ a = {x^y} $ , so the logarithm function being the inverse of the exponential function is of the form $ y = {\log _x}a $ . To evaluate this question, we will use the laws of the logarithm.
Complete step-by-step answer:
We have to condense $ \ln \left( 8 \right) - \ln \left( x \right) $ .
We know that
$ {\log _a}x - {\log _a}y = {\log _a}\left( {\dfrac{x}{y}} \right) $
Hence, $ \ln \left( 8 \right) - \ln \left( x \right) $ can also be condensed in the same way using the logarithmic identity.
$ \ln \left( 8 \right) - \ln \left( x \right) = \ln \left( {\dfrac{8}{x}} \right) $
So, the correct answer is “ $ \ln \left( {\dfrac{8}{x}} \right) $ ”.
Note: There are several laws of the logarithm that make the calculations easier and help us evaluate the logarithm functions. The standard base of logarithm functions is 10, that is, if we are given a function without any base like $ \log x $ then we take the base as 10. But in the given question, we are given the function $ \ln x $ . $ \ln x $ is a logarithmic function with base of $ \log $ as e. So, the base of both $ \ln 8 $ and $ \ln x $ is e. Now while applying the laws of the logarithm, we should keep in mind an important rule that is the base of the logarithm functions involved should be the same in all the calculations, as the base of both the functions in the question is the same, we can apply the logarithm laws in the given question.
Complete step-by-step answer:
We have to condense $ \ln \left( 8 \right) - \ln \left( x \right) $ .
We know that
$ {\log _a}x - {\log _a}y = {\log _a}\left( {\dfrac{x}{y}} \right) $
Hence, $ \ln \left( 8 \right) - \ln \left( x \right) $ can also be condensed in the same way using the logarithmic identity.
$ \ln \left( 8 \right) - \ln \left( x \right) = \ln \left( {\dfrac{8}{x}} \right) $
So, the correct answer is “ $ \ln \left( {\dfrac{8}{x}} \right) $ ”.
Note: There are several laws of the logarithm that make the calculations easier and help us evaluate the logarithm functions. The standard base of logarithm functions is 10, that is, if we are given a function without any base like $ \log x $ then we take the base as 10. But in the given question, we are given the function $ \ln x $ . $ \ln x $ is a logarithmic function with base of $ \log $ as e. So, the base of both $ \ln 8 $ and $ \ln x $ is e. Now while applying the laws of the logarithm, we should keep in mind an important rule that is the base of the logarithm functions involved should be the same in all the calculations, as the base of both the functions in the question is the same, we can apply the logarithm laws in the given question.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

