
Compute the value of the following expression:
\[{{\cos }^{-1}}\left( \dfrac{1}{2} \right)-2{{\sin }^{-1}}\left( \dfrac{-1}{2} \right)\].
Answer
607.8k+ views
Hint:For the above question we will have to know about the principal value of an inverse trigonometric function is a value that belongs to the principal branch of range of function. We know that the principal branch of range for \[{{\cos }^{-1}}x\] is \[\left[ 0,\pi \right]\] and for \[si{{n}^{-1}}x\] is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\]. We can start solving this question by taking \[\theta ={{\cos }^{-1}}\left( \dfrac{1}{2} \right)\] and then find the principal value of \[\theta \]. Then we can proceed to \[{{\sin }^{-1}}\left( \dfrac{-1}{2} \right)\] in a similar way.
Complete step-by-step answer:
We have been given to evaluate the trigonometric expression \[{{\cos }^{-1}}\left( \dfrac{1}{2} \right)-2{{\sin }^{-1}}\left( \dfrac{-1}{2} \right)\].
Now we know that the principal value means the value which lies between the defined range of inverse trigonometric functions.
For \[{{\cos }^{-1}}x\] the range is \[\left[ 0,\pi \right]\].
For \[si{{n}^{-1}}x\] the range is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\].
Let us suppose \[\theta ={{\cos }^{-1}}\left( \dfrac{1}{2} \right)\]
We know that \[\cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2}\].
So, by substituting the value of \[\dfrac{1}{2}\] in the above expression, we get as follows:
\[\theta ={{\cos }^{-1}}\left( \cos \dfrac{\pi }{3} \right)\]
Since we know that \[{{\cos }^{-1}}\cos x=x\], where x must lie between the interval \[\left[ 0,\pi \right]\].
\[\Rightarrow \theta =\dfrac{\pi }{3}\]
Hence \[{{\cos }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{3}\].
Again, let us suppose \[\theta =si{{n}^{-1}}\left( \dfrac{-1}{2} \right)\].
We know that \[sin\left( \dfrac{-\pi }{6} \right)=\dfrac{-1}{2}\].
So by substituting the value of \[\dfrac{-1}{2}\] in the expression, we get as follows:
\[\theta ={{\sin }^{-1}}\sin \dfrac{-\pi }{6}\]
Since we know that \[{{\sin }^{-1}}\operatorname{sinx}=x\], where x must lie between the interval \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\].
\[\Rightarrow \theta =\dfrac{-\pi }{6}\]
Hence \[si{{n}^{-1}}\left( \dfrac{-1}{2} \right)=\dfrac{-\pi }{6}\]
Now substituting the values of \[{{\cos }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{3}\] and \[si{{n}^{-1}}\left( \dfrac{-1}{2} \right)=\dfrac{-\pi }{6}\] in the given expression we get as follows:
\[{{\cos }^{-1}}\left( \dfrac{1}{2} \right)-2si{{n}^{-1}}\left( \dfrac{-1}{2} \right)=\dfrac{\pi }{3}-2\left( \dfrac{-\pi }{6} \right)=\dfrac{\pi }{3}+\dfrac{2\pi }{6}=\dfrac{\pi }{3}+\dfrac{\pi }{3}=\dfrac{2\pi }{3}\]
Therefore, the value of the given expression, \[{{\cos }^{-1}}\left( \dfrac{1}{2} \right)-2si{{n}^{-1}}\left( \dfrac{-1}{2} \right)\] is equal to \[\dfrac{2\pi }{3}\].
Note: Be careful while finding the principal value of the inverse trigonometric function and do check it once that the value must lie between the principal branch of range of the function. Sometimes we forget the ‘2’ multiplied by \[{{\sin }^{-1}}\left( \dfrac{-1}{2} \right)\] in the given expression and we just substitute the values of \[{{\sin }^{-1}}\left( \dfrac{-1}{2} \right)\] and we get the incorrect answer.Students should remember the properties of inverse trigonometric functions and trigonometric standard angles to solve these types of questions.
Complete step-by-step answer:
We have been given to evaluate the trigonometric expression \[{{\cos }^{-1}}\left( \dfrac{1}{2} \right)-2{{\sin }^{-1}}\left( \dfrac{-1}{2} \right)\].
Now we know that the principal value means the value which lies between the defined range of inverse trigonometric functions.
For \[{{\cos }^{-1}}x\] the range is \[\left[ 0,\pi \right]\].
For \[si{{n}^{-1}}x\] the range is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\].
Let us suppose \[\theta ={{\cos }^{-1}}\left( \dfrac{1}{2} \right)\]
We know that \[\cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2}\].
So, by substituting the value of \[\dfrac{1}{2}\] in the above expression, we get as follows:
\[\theta ={{\cos }^{-1}}\left( \cos \dfrac{\pi }{3} \right)\]
Since we know that \[{{\cos }^{-1}}\cos x=x\], where x must lie between the interval \[\left[ 0,\pi \right]\].
\[\Rightarrow \theta =\dfrac{\pi }{3}\]
Hence \[{{\cos }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{3}\].
Again, let us suppose \[\theta =si{{n}^{-1}}\left( \dfrac{-1}{2} \right)\].
We know that \[sin\left( \dfrac{-\pi }{6} \right)=\dfrac{-1}{2}\].
So by substituting the value of \[\dfrac{-1}{2}\] in the expression, we get as follows:
\[\theta ={{\sin }^{-1}}\sin \dfrac{-\pi }{6}\]
Since we know that \[{{\sin }^{-1}}\operatorname{sinx}=x\], where x must lie between the interval \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\].
\[\Rightarrow \theta =\dfrac{-\pi }{6}\]
Hence \[si{{n}^{-1}}\left( \dfrac{-1}{2} \right)=\dfrac{-\pi }{6}\]
Now substituting the values of \[{{\cos }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{3}\] and \[si{{n}^{-1}}\left( \dfrac{-1}{2} \right)=\dfrac{-\pi }{6}\] in the given expression we get as follows:
\[{{\cos }^{-1}}\left( \dfrac{1}{2} \right)-2si{{n}^{-1}}\left( \dfrac{-1}{2} \right)=\dfrac{\pi }{3}-2\left( \dfrac{-\pi }{6} \right)=\dfrac{\pi }{3}+\dfrac{2\pi }{6}=\dfrac{\pi }{3}+\dfrac{\pi }{3}=\dfrac{2\pi }{3}\]
Therefore, the value of the given expression, \[{{\cos }^{-1}}\left( \dfrac{1}{2} \right)-2si{{n}^{-1}}\left( \dfrac{-1}{2} \right)\] is equal to \[\dfrac{2\pi }{3}\].
Note: Be careful while finding the principal value of the inverse trigonometric function and do check it once that the value must lie between the principal branch of range of the function. Sometimes we forget the ‘2’ multiplied by \[{{\sin }^{-1}}\left( \dfrac{-1}{2} \right)\] in the given expression and we just substitute the values of \[{{\sin }^{-1}}\left( \dfrac{-1}{2} \right)\] and we get the incorrect answer.Students should remember the properties of inverse trigonometric functions and trigonometric standard angles to solve these types of questions.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

