
Complete the sequence:
\[\text{17},\text{ 15},\text{ 26},\text{ 22},\text{ 35},\text{ 29},\text{ }\underline{?},\text{ }\underline{?}\]
Answer
574.5k+ views
Hint: The above question is a somewhat reasoning type question, which can be done by various tricks and methods. The approach is simple and catchy. Compare each next term with the previous term and observe what kind of relationship we have. After observing we simply apply these relations to the next upcoming terms. Try finding the difference between the alternate set of terms like for 17, 15 then 26, then for 35, 29, and then proceed further.
Complete step-by-step solution:
Let’s move ahead to our question, complete the sequence \[\text{17},\text{ 15},\text{ 26},\text{ 22},\text{ 35},\text{ 29},\text{ }\underline{?},\text{ }\underline{?}\]
The above figure, uses two operations:
\[\begin{align}
& \text{First:} \\
& \text{17}-\text{2}=\text{15} \\
& \text{26}-\text{4}=\text{22} \\
& \text{35}-\text{6}=\text{29} \\
& \text{44}-\text{8}=\text{36} \\
\end{align}\]
\[\begin{align}
& \text{Second:} \\
& \text{15}+\text{11}=\text{26} \\
& \text{22}+\text{13}=\text{35} \\
& \text{29}+\text{15}=\text{44} \\
\end{align}\]
In first operation, alternate terms are subtracted by increasing even numbers i.e. 2, 4, 6, 8 . . . . .
In second operation, second term is increased by 11, then alternate terms are increased by \[\begin{matrix}
11+2, \\
\begin{align}
& \downarrow \\
& \left( 13 \right) \\
\end{align} \\
\end{matrix}\begin{matrix}
11+4, \\
\downarrow \\
\left( 15 \right) \\
\end{matrix}\begin{matrix}
11+6 \\
\downarrow \\
\left( 17 \right) \\
\end{matrix}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{.}\]
In this way, we get our next two terms as 44 and 36.
Note: The chances of mistakes are less once we get the logic. By the way, this question can also be done with one other method.
Given series: \[\text{17},\text{ 15},\text{ 26},\text{ 22},\text{ 35},\text{ 29},\text{ }\underline{?},\text{ }\underline{?}\]
We can write above series as the combination of two arithmetic series, i.e.
\[\text{17},\text{ 15},\text{ }\left( \text{17}+\text{9} \right),\text{ }\left( \text{15}+\text{7} \right),\text{ }\left( \text{17}+\text{9}+\text{9} \right),\text{ }\left( \text{15}+\text{7}+\text{7} \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{.}\]
\[\begin{align}
& \text{First AP}:\text{ 17},\text{ }\left( \text{17}+\text{9} \right),\text{ }\left( \text{17}+\text{9}+\text{9} \right),\text{ }\left( \text{17}+\text{9}+\text{9}+\text{9} \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. } \\
& \text{Second AP}:\text{ 15},\text{ }\left( \text{15}+\text{7} \right),\text{ }\left( \text{15}+\text{7}+\text{7} \right),\text{ }\left( \text{15}+\text{7}+\text{7}+\text{7} \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{.} \\
\end{align}\]
Now, by calculating above two series, we get:
\[\begin{align}
& \Rightarrow \text{17},\text{15},\left( \text{17}+\text{9} \right),\left( \text{15}+\text{7} \right),\left( \text{17}+\text{9}+\text{9} \right),\left( \text{15}+\text{7}+\text{7} \right),\left( \text{17}+\text{9}+\text{9}+\text{9} \right),\left( \text{15}+\text{7}+\text{7}+\text{7} \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. } \\
& \Rightarrow \text{17},\text{ 15},\text{ 26},\text{ 22},\text{ 35},\text{ 29},\text{ 44},\text{ 36 }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{.} \\
\end{align}\]
Hence, we get 44 and 36 as answers.
Complete step-by-step solution:
Let’s move ahead to our question, complete the sequence \[\text{17},\text{ 15},\text{ 26},\text{ 22},\text{ 35},\text{ 29},\text{ }\underline{?},\text{ }\underline{?}\]
The above figure, uses two operations:
\[\begin{align}
& \text{First:} \\
& \text{17}-\text{2}=\text{15} \\
& \text{26}-\text{4}=\text{22} \\
& \text{35}-\text{6}=\text{29} \\
& \text{44}-\text{8}=\text{36} \\
\end{align}\]
\[\begin{align}
& \text{Second:} \\
& \text{15}+\text{11}=\text{26} \\
& \text{22}+\text{13}=\text{35} \\
& \text{29}+\text{15}=\text{44} \\
\end{align}\]
In first operation, alternate terms are subtracted by increasing even numbers i.e. 2, 4, 6, 8 . . . . .
In second operation, second term is increased by 11, then alternate terms are increased by \[\begin{matrix}
11+2, \\
\begin{align}
& \downarrow \\
& \left( 13 \right) \\
\end{align} \\
\end{matrix}\begin{matrix}
11+4, \\
\downarrow \\
\left( 15 \right) \\
\end{matrix}\begin{matrix}
11+6 \\
\downarrow \\
\left( 17 \right) \\
\end{matrix}\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{.}\]
In this way, we get our next two terms as 44 and 36.
Note: The chances of mistakes are less once we get the logic. By the way, this question can also be done with one other method.
Given series: \[\text{17},\text{ 15},\text{ 26},\text{ 22},\text{ 35},\text{ 29},\text{ }\underline{?},\text{ }\underline{?}\]
We can write above series as the combination of two arithmetic series, i.e.
\[\text{17},\text{ 15},\text{ }\left( \text{17}+\text{9} \right),\text{ }\left( \text{15}+\text{7} \right),\text{ }\left( \text{17}+\text{9}+\text{9} \right),\text{ }\left( \text{15}+\text{7}+\text{7} \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{.}\]
\[\begin{align}
& \text{First AP}:\text{ 17},\text{ }\left( \text{17}+\text{9} \right),\text{ }\left( \text{17}+\text{9}+\text{9} \right),\text{ }\left( \text{17}+\text{9}+\text{9}+\text{9} \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. } \\
& \text{Second AP}:\text{ 15},\text{ }\left( \text{15}+\text{7} \right),\text{ }\left( \text{15}+\text{7}+\text{7} \right),\text{ }\left( \text{15}+\text{7}+\text{7}+\text{7} \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{.} \\
\end{align}\]
Now, by calculating above two series, we get:
\[\begin{align}
& \Rightarrow \text{17},\text{15},\left( \text{17}+\text{9} \right),\left( \text{15}+\text{7} \right),\left( \text{17}+\text{9}+\text{9} \right),\left( \text{15}+\text{7}+\text{7} \right),\left( \text{17}+\text{9}+\text{9}+\text{9} \right),\left( \text{15}+\text{7}+\text{7}+\text{7} \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. } \\
& \Rightarrow \text{17},\text{ 15},\text{ 26},\text{ 22},\text{ 35},\text{ 29},\text{ 44},\text{ 36 }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. }\text{.} \\
\end{align}\]
Hence, we get 44 and 36 as answers.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

