
Choose the value of the hyperbolic trigonometric expression $\dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}}$ from the given options:
A. ${e^{ - x}}$
B. ${e^x}$
C. $2{e^{x/2}}$
D. $2{e^{ - x/2}}$
Answer
465.6k+ views
Hint:In this problem, we are using the formulae of hyperbolic trigonometric function that is $\tanh (x) = \dfrac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}}$. By using the above-mentioned formula we first find the values of the numerator and denominator of the required hyperbolic trigonometric expression that is $\dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}}$ and then divide the numerator and denominator for the required value.
Complete step by step answer:
First, let’s find the value of the numerator.
$Numerator = \left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]$
Now, let’s substitute the value of $\tanh (x/2)$ in the above equation.
$ \Rightarrow Numerator = 1 + \dfrac{{{e^{\dfrac{x}{2}}} - {e^{ - \dfrac{x}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}$
On simplification, we get,
$ \Rightarrow Numerator = \dfrac{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}} + {e^{\dfrac{x}{2}}} - {e^{ - \dfrac{x}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}$
Here, we can cancel the term ${e^{ - x/2}}$. We get,
$ \Rightarrow Numerator = \dfrac{{2{e^{\dfrac{x}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}$
So, the value of the numerator of the required hyperbolic trigonometric expression is $\dfrac{{2{e^{\dfrac{x}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}$.
Now, let’s substitute the value of the $\tanh (x/2)$in the above equation.
${\text{Denominator}} = \left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]$
On simplification, we get
$ \Rightarrow denominator = \dfrac{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}} - ({e^{\dfrac{x}{2}}} - {e^{ - \dfrac{x}{2}}})}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}$
Here we can eliminate the term ${e^{x/2}}$, we get
$ \Rightarrow denominator = \dfrac{{2{e^{ - \dfrac{x}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}$
So, the value of the denominator of the required hyperbolic trigonometric expression is $\dfrac{{2{e^{ - \dfrac{x}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}$
Now we require the value of the whole expression.
So, we have, $\dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = \dfrac{{\dfrac{{2{e^{\dfrac{x}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}}}{{\dfrac{{2{e^{ - \dfrac{x}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}}}$
Here we can cancel the term ${e^{x/2}} + {e^{ - x/2}}$ in numerator and denominator, so we get
$ \Rightarrow \dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = \dfrac{{{e^{\dfrac{x}{2}}}}}{{{e^{ - \dfrac{x}{2}}}}}$
On further simplification, we get
$ \Rightarrow \dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = {e^{\dfrac{x}{2}}} \times {e^{\dfrac{x}{2}}}$
$ \Rightarrow \dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = {e^{\dfrac{x}{2} + \dfrac{x}{2}}} = {e^x}$
So the required value of the trigonometric expression $\dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}}$ is ${e^x}$.
Therefore, the correct option is B.
Note:The formula for hyperbolic trigonometric functions: tangent, sine and cosine is $\dfrac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}}$, $\dfrac{{{e^{\dfrac{x}{2}}} - {e^{ - \dfrac{x}{2}}}}}{2}$ and $\dfrac{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}{2}$ respectively. We can also substitute the value of $\tanh (x)$ as $\dfrac{{\sinh x}}{{\cosh x}}$ and then substitute the values of the hyperbolic sine and cosine to get to the required answer.
So, we have, \[\dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = \dfrac{{\left[ {\dfrac{{\cosh \dfrac{x}{2} + \sinh \dfrac{x}{2}}}{{\cosh \dfrac{x}{2}}}} \right]}}{{\left[ {\dfrac{{\cosh \dfrac{x}{2} - \sinh \dfrac{x}{2}}}{{\cosh \dfrac{x}{2}}}} \right]}}\]
Cancelling the common factors,
\[ \Rightarrow \dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = \dfrac{{\cosh \dfrac{x}{2} + \sinh \dfrac{x}{2}}}{{\cosh \dfrac{x}{2} - \sinh \dfrac{x}{2}}}\]
Substituting values of hyperbolic sine and cosine, we get,
\[ \Rightarrow \dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = \dfrac{{\dfrac{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}{2} + \dfrac{{{e^{\dfrac{x}{2}}} - {e^{ - \dfrac{x}{2}}}}}{2}}}{{\dfrac{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}{2} - \dfrac{{{e^{\dfrac{x}{2}}} - {e^{ - \dfrac{x}{2}}}}}{2}}}\]
Simplifying the expression, we get,
\[ \Rightarrow \dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = \dfrac{{{e^{\dfrac{x}{2}}}}}{{{e^{ - \dfrac{x}{2}}}}}\]
\[ \Rightarrow \dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = {e^x}\]
Hence, we arrive at the same answer using both ways.
Complete step by step answer:
First, let’s find the value of the numerator.
$Numerator = \left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]$
Now, let’s substitute the value of $\tanh (x/2)$ in the above equation.
$ \Rightarrow Numerator = 1 + \dfrac{{{e^{\dfrac{x}{2}}} - {e^{ - \dfrac{x}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}$
On simplification, we get,
$ \Rightarrow Numerator = \dfrac{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}} + {e^{\dfrac{x}{2}}} - {e^{ - \dfrac{x}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}$
Here, we can cancel the term ${e^{ - x/2}}$. We get,
$ \Rightarrow Numerator = \dfrac{{2{e^{\dfrac{x}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}$
So, the value of the numerator of the required hyperbolic trigonometric expression is $\dfrac{{2{e^{\dfrac{x}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}$.
Now, let’s substitute the value of the $\tanh (x/2)$in the above equation.
${\text{Denominator}} = \left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]$
On simplification, we get
$ \Rightarrow denominator = \dfrac{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}} - ({e^{\dfrac{x}{2}}} - {e^{ - \dfrac{x}{2}}})}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}$
Here we can eliminate the term ${e^{x/2}}$, we get
$ \Rightarrow denominator = \dfrac{{2{e^{ - \dfrac{x}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}$
So, the value of the denominator of the required hyperbolic trigonometric expression is $\dfrac{{2{e^{ - \dfrac{x}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}$
Now we require the value of the whole expression.
So, we have, $\dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = \dfrac{{\dfrac{{2{e^{\dfrac{x}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}}}{{\dfrac{{2{e^{ - \dfrac{x}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}}}$
Here we can cancel the term ${e^{x/2}} + {e^{ - x/2}}$ in numerator and denominator, so we get
$ \Rightarrow \dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = \dfrac{{{e^{\dfrac{x}{2}}}}}{{{e^{ - \dfrac{x}{2}}}}}$
On further simplification, we get
$ \Rightarrow \dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = {e^{\dfrac{x}{2}}} \times {e^{\dfrac{x}{2}}}$
$ \Rightarrow \dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = {e^{\dfrac{x}{2} + \dfrac{x}{2}}} = {e^x}$
So the required value of the trigonometric expression $\dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}}$ is ${e^x}$.
Therefore, the correct option is B.
Note:The formula for hyperbolic trigonometric functions: tangent, sine and cosine is $\dfrac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}}$, $\dfrac{{{e^{\dfrac{x}{2}}} - {e^{ - \dfrac{x}{2}}}}}{2}$ and $\dfrac{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}{2}$ respectively. We can also substitute the value of $\tanh (x)$ as $\dfrac{{\sinh x}}{{\cosh x}}$ and then substitute the values of the hyperbolic sine and cosine to get to the required answer.
So, we have, \[\dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = \dfrac{{\left[ {\dfrac{{\cosh \dfrac{x}{2} + \sinh \dfrac{x}{2}}}{{\cosh \dfrac{x}{2}}}} \right]}}{{\left[ {\dfrac{{\cosh \dfrac{x}{2} - \sinh \dfrac{x}{2}}}{{\cosh \dfrac{x}{2}}}} \right]}}\]
Cancelling the common factors,
\[ \Rightarrow \dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = \dfrac{{\cosh \dfrac{x}{2} + \sinh \dfrac{x}{2}}}{{\cosh \dfrac{x}{2} - \sinh \dfrac{x}{2}}}\]
Substituting values of hyperbolic sine and cosine, we get,
\[ \Rightarrow \dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = \dfrac{{\dfrac{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}{2} + \dfrac{{{e^{\dfrac{x}{2}}} - {e^{ - \dfrac{x}{2}}}}}{2}}}{{\dfrac{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}{2} - \dfrac{{{e^{\dfrac{x}{2}}} - {e^{ - \dfrac{x}{2}}}}}{2}}}\]
Simplifying the expression, we get,
\[ \Rightarrow \dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = \dfrac{{{e^{\dfrac{x}{2}}}}}{{{e^{ - \dfrac{x}{2}}}}}\]
\[ \Rightarrow \dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = {e^x}\]
Hence, we arrive at the same answer using both ways.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

