Answer
Verified
431.4k+ views
Hint: In order to solve this problem we need to try to find $f'(x)$. Knowing that if the value of x is negative the modulus will open with a negative sign and conversely. We also need to know that differentiation of log x is $\dfrac{1}{x}$. After that we have to consider the interval and get the right answer.
Complete step-by-step answer:
So it is given to us that $f(x) = \left| {{{\log }_e}\left| x \right|} \right|$ then,
For x>1, we have
$f(x) = \left| {{{\log }_e}\left| x \right|} \right|$=logx
And hence on doing the differentiation we have
$ \Rightarrow f'(x) = \dfrac{1}{x}$
Now again for x<-1 we have
$f(x) = \left| {{{\log }_e}\left| x \right|} \right|$=-logx
And hence on doing the differentiation we have,
$ \Rightarrow f'(x) = \dfrac{{ - 1}}{x}$
Now this time for 0$f(x) = \left| {{{\log }_e}\left| x \right|} \right|$= logx
And hence again on doing the differentiation, we have
$ \Rightarrow f'(x) = \dfrac{1}{x}$
Now for -1$f(x) = \left| {{{\log }_e}\left| x \right|} \right|$ =-log(x)
And hence on doing the differentiation, we have
$ \Rightarrow f'(x) = \dfrac{{ - 1}}{x}$
Hence f’(x)=$\left\{ \begin{gathered}
\dfrac{1}{x},\left| x \right| > 1 \\
\dfrac{{ - 1}}{x},\left| x \right| < 1 \\
\end{gathered} \right.$
So, the correct answer is “Option B”.
Note: In this type of question we have to find that on solving the above expression which of the options will be suitable and hence for that we’ll try to differentiate the above expression on given conditions and proceeding like above we have done will take you to the right answer.
Complete step-by-step answer:
So it is given to us that $f(x) = \left| {{{\log }_e}\left| x \right|} \right|$ then,
For x>1, we have
$f(x) = \left| {{{\log }_e}\left| x \right|} \right|$=logx
And hence on doing the differentiation we have
$ \Rightarrow f'(x) = \dfrac{1}{x}$
Now again for x<-1 we have
$f(x) = \left| {{{\log }_e}\left| x \right|} \right|$=-logx
And hence on doing the differentiation we have,
$ \Rightarrow f'(x) = \dfrac{{ - 1}}{x}$
Now this time for 0
And hence again on doing the differentiation, we have
$ \Rightarrow f'(x) = \dfrac{1}{x}$
Now for -1
And hence on doing the differentiation, we have
$ \Rightarrow f'(x) = \dfrac{{ - 1}}{x}$
Hence f’(x)=$\left\{ \begin{gathered}
\dfrac{1}{x},\left| x \right| > 1 \\
\dfrac{{ - 1}}{x},\left| x \right| < 1 \\
\end{gathered} \right.$
So, the correct answer is “Option B”.
Note: In this type of question we have to find that on solving the above expression which of the options will be suitable and hence for that we’ll try to differentiate the above expression on given conditions and proceeding like above we have done will take you to the right answer.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
10 examples of evaporation in daily life with explanations
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE