
Choose from the given alternative: In any triangle ABC which of the following is equivalent to$\sin 2A+\sin 2B+\sin 2C$ ?
(a) $4\sin A\sin B\sin C$
(b) $4\cos A\cos B\cos C$
(c) $\dfrac{3}{2}\sin A\cos B$
(d) $4\cos A\sin B\cos C$
Answer
600.3k+ views
Hint:
Use the formula of summation of two sine terms.
$\begin{align}
& \sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) \\
& \cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) \\
\end{align}$
Use angle sum property of triangle:
In any triangle $ABC$, $\angle A+\angle B+\angle C={{180}^{{}^\circ }}$. It is simply written as
A + B + C = 180°
Use basic formula of trigonometry like
$\begin{align}
& \sin 2\theta =2\sin \theta \cos \theta \\
& \sin ({{90}^{\circ }}-A)=\cos A \\
& \sin ({{180}^{{}^\circ }}-A)=\sin A \\
& \cos ({{90}^{\circ }}-A)=\sin A \\
\end{align}$
Complete step-by-step answer:
We know that
$\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$
Using the formula mentioned above with C = 2A and D = 2B we get our expression converted as:
$\begin{align}
& \sin 2A+\sin 2B+\sin 2C=\left( \sin 2A+\sin 2B \right)+\sin 2C \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=2\sin \left( \dfrac{2A+2B}{2} \right)\cos \left( \dfrac{2A-2B}{2} \right)+\sin 2C \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=2\sin \left( A+B \right)\cos \left( A-B \right)+\sin 2C\,\,\,\,\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot (\text{ii)} \\
\end{align}$
We know that in triangle ABC,
A + B + C = 180°
⇒ A + B = 180° - C
$\Rightarrow \sin \left( A+B \right)=\sin \left( {{180}^{{}^\circ }}-C \right)\,\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(iii)}$
Also, for any angle $\theta $ we have,
$\sin \theta =\sin \left( {{180}^{{}^\circ }}-\theta \right)$
Using the above formula in equation (iii) we get
$\sin \left( A+B \right)=\sin \left( {{180}^{{}^\circ }}-C \right)=\sin C\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(iv)}$
For any angle $\theta $ we have
$\sin 2\theta =2\sin \theta \cos \theta $
Using this with $\theta =C$ we get,
$\sin 2C=2\sin C\cos C\,\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(v)}$
Using equation (iv) and equation (v) in equation (ii) we get,
$\begin{align}
& \sin 2A+\sin 2B+\sin 2C=2\sin \left( A+B \right)\cos \left( A-B \right)+\sin 2C \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=2\sin C\cos \left( A-B \right)+2\sin C\cos C \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=2\sin C\left( \cos \left( A-B \right)+\cos C \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(vi)} \\
\end{align}$
We know that for any angle C and D,
$\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$
Using the above formula in equation (vi) we get
$\begin{align}
& \sin 2A+\sin 2B+\sin 2C\,=2\sin C\left( \cos \left( A-B \right)+\cos C \right) \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=2\sin C\left( 2\cos \left( \dfrac{A-B+C}{2} \right)\cos \left( \dfrac{A-B-C}{2} \right) \right) \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=4\sin C\cos \left( \dfrac{A-B+C}{2} \right)\cos \left( \dfrac{A-B-C}{2} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(vii)} \\
\end{align}$
We have
A + B + C = 180°
⇒A – B + C = 180°-2B
$\begin{align}
& \Rightarrow \dfrac{A-B+C}{2}=\dfrac{{{180}^{{}^\circ }}-2B}{2}={{90}^{\circ }}-B \\
& \Rightarrow \cos \left( \dfrac{A-B+C}{2} \right)=\cos \left( {{90}^{\circ }}-B \right)\,\,\,\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(viii)} \\
\end{align}$
We know for any angle $\theta $,
$\cos \left( {{90}^{{}^\circ }}-\theta \right)=\sin \theta $
Applying this formula in the equation (viii) we get
$\cos \left( \dfrac{A-B+C}{2} \right)=\cos \left( {{90}^{\circ }}-B \right)=\sin B\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(ix)}$
Again,
A – B – C = 90° - 2B – 2C
\[\begin{align}
& \Rightarrow \dfrac{A-B-C}{2}=\dfrac{{{180}^{{}^\circ }}-2B-2C}{2}={{90}^{\circ }}-B-C \\
& \Rightarrow \cos \left( \dfrac{A-B+C}{2} \right)=\cos \left( {{90}^{\circ }}-B-C \right) \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\sin \left( B+C \right) \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\sin \left( {{180}^{{}^\circ }}-A \right)\,\, \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\sin \left( A \right)\,\,\,\,\,\cdot \cdot \cdot \text{(x)} \\
\end{align}\]
Using equation (ix) and equation (x) in equation (vii) we get
$\begin{align}
& \sin 2A+\sin 2B+\sin 2C\,=4\sin C\cos \left( \dfrac{A-B+C}{2} \right)\cos \left( \dfrac{A-B-C}{2} \right) \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=4\sin C\sin B\sin A \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=4\sin A\sin B\sin C \\
\end{align}$
Hence option (a) is correct.
Note:
There are lots of trigonometric formulas used. There is a chance of making mistakes in applying those formulas. You can also start taking another two sine terms in a group and then converting them into products of sine and cosine. That will also yield the same result.
Use the formula of summation of two sine terms.
$\begin{align}
& \sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) \\
& \cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) \\
\end{align}$
Use angle sum property of triangle:
In any triangle $ABC$, $\angle A+\angle B+\angle C={{180}^{{}^\circ }}$. It is simply written as
A + B + C = 180°
Use basic formula of trigonometry like
$\begin{align}
& \sin 2\theta =2\sin \theta \cos \theta \\
& \sin ({{90}^{\circ }}-A)=\cos A \\
& \sin ({{180}^{{}^\circ }}-A)=\sin A \\
& \cos ({{90}^{\circ }}-A)=\sin A \\
\end{align}$
Complete step-by-step answer:
We know that
$\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$
Using the formula mentioned above with C = 2A and D = 2B we get our expression converted as:
$\begin{align}
& \sin 2A+\sin 2B+\sin 2C=\left( \sin 2A+\sin 2B \right)+\sin 2C \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=2\sin \left( \dfrac{2A+2B}{2} \right)\cos \left( \dfrac{2A-2B}{2} \right)+\sin 2C \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=2\sin \left( A+B \right)\cos \left( A-B \right)+\sin 2C\,\,\,\,\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot (\text{ii)} \\
\end{align}$
We know that in triangle ABC,
A + B + C = 180°
⇒ A + B = 180° - C
$\Rightarrow \sin \left( A+B \right)=\sin \left( {{180}^{{}^\circ }}-C \right)\,\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(iii)}$
Also, for any angle $\theta $ we have,
$\sin \theta =\sin \left( {{180}^{{}^\circ }}-\theta \right)$
Using the above formula in equation (iii) we get
$\sin \left( A+B \right)=\sin \left( {{180}^{{}^\circ }}-C \right)=\sin C\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(iv)}$
For any angle $\theta $ we have
$\sin 2\theta =2\sin \theta \cos \theta $
Using this with $\theta =C$ we get,
$\sin 2C=2\sin C\cos C\,\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(v)}$
Using equation (iv) and equation (v) in equation (ii) we get,
$\begin{align}
& \sin 2A+\sin 2B+\sin 2C=2\sin \left( A+B \right)\cos \left( A-B \right)+\sin 2C \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=2\sin C\cos \left( A-B \right)+2\sin C\cos C \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=2\sin C\left( \cos \left( A-B \right)+\cos C \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(vi)} \\
\end{align}$
We know that for any angle C and D,
$\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$
Using the above formula in equation (vi) we get
$\begin{align}
& \sin 2A+\sin 2B+\sin 2C\,=2\sin C\left( \cos \left( A-B \right)+\cos C \right) \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=2\sin C\left( 2\cos \left( \dfrac{A-B+C}{2} \right)\cos \left( \dfrac{A-B-C}{2} \right) \right) \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=4\sin C\cos \left( \dfrac{A-B+C}{2} \right)\cos \left( \dfrac{A-B-C}{2} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(vii)} \\
\end{align}$
We have
A + B + C = 180°
⇒A – B + C = 180°-2B
$\begin{align}
& \Rightarrow \dfrac{A-B+C}{2}=\dfrac{{{180}^{{}^\circ }}-2B}{2}={{90}^{\circ }}-B \\
& \Rightarrow \cos \left( \dfrac{A-B+C}{2} \right)=\cos \left( {{90}^{\circ }}-B \right)\,\,\,\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(viii)} \\
\end{align}$
We know for any angle $\theta $,
$\cos \left( {{90}^{{}^\circ }}-\theta \right)=\sin \theta $
Applying this formula in the equation (viii) we get
$\cos \left( \dfrac{A-B+C}{2} \right)=\cos \left( {{90}^{\circ }}-B \right)=\sin B\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(ix)}$
Again,
A – B – C = 90° - 2B – 2C
\[\begin{align}
& \Rightarrow \dfrac{A-B-C}{2}=\dfrac{{{180}^{{}^\circ }}-2B-2C}{2}={{90}^{\circ }}-B-C \\
& \Rightarrow \cos \left( \dfrac{A-B+C}{2} \right)=\cos \left( {{90}^{\circ }}-B-C \right) \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\sin \left( B+C \right) \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\sin \left( {{180}^{{}^\circ }}-A \right)\,\, \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\sin \left( A \right)\,\,\,\,\,\cdot \cdot \cdot \text{(x)} \\
\end{align}\]
Using equation (ix) and equation (x) in equation (vii) we get
$\begin{align}
& \sin 2A+\sin 2B+\sin 2C\,=4\sin C\cos \left( \dfrac{A-B+C}{2} \right)\cos \left( \dfrac{A-B-C}{2} \right) \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=4\sin C\sin B\sin A \\
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=4\sin A\sin B\sin C \\
\end{align}$
Hence option (a) is correct.
Note:
There are lots of trigonometric formulas used. There is a chance of making mistakes in applying those formulas. You can also start taking another two sine terms in a group and then converting them into products of sine and cosine. That will also yield the same result.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

