
Check whether the multiplication of a matrix is associative.
Answer
518.7k+ views
Hint: Matrix is a table of numbers, symbols, arranged in rows and columns. The dimension of a matrix is represented as rows multiplied with columns. For example, $\left( {2 \times 3} \right)$, here are two rows and three columns. When a rectangular array is formed by arranging the numbers in rows and columns is termed as matrix.
Complete step by step solution:
We have to check whether the matrix multiplication follows associative property or not.
For any three given matrices $A$, $B$ and $C$, the associative property is given as,
$\left( {A \times B} \right) \times C = A \times \left( {B \times C} \right)$
We can assume three matrices with general terms as,
\[
A = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&d \\
e&f
\end{array}} \right] \\
B = \left[ {\begin{array}{*{20}{c}}
g&h&i&j \\
k&l&m&n
\end{array}} \right] \\
C = \left[ {\begin{array}{*{20}{c}}
o&p \\
q&r \\
s&t \\
u&v
\end{array}} \right] \\
\]
While assuming the order of the matrices we have to make sure that calculation of both $\left( {A \times B} \right) \times C$ and $A \times \left( {B \times C} \right)$ is possible.
Now first we evaluate the LHS, i.e. $\left( {A \times B} \right) \times C$.
$\left( {A \times B} \right) \times C = \left( {\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d \\
e&f
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
g&h&i&j \\
k&l&m&n
\end{array}} \right]} \right) \times \left[ {\begin{array}{*{20}{c}}
o&p \\
q&r \\
s&t \\
u&v
\end{array}} \right]$
We can simplify this as,
\[
\left( {\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d \\
e&f
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
g&h&i&j \\
k&l&m&n
\end{array}} \right]} \right) \times \left[ {\begin{array}{*{20}{c}}
o&p \\
q&r \\
s&t \\
u&v
\end{array}} \right] \\
= \left[ {\begin{array}{*{20}{c}}
{ag + bk}&{ah + bl}&{ai + bm}&{aj + bn} \\
{cg + dk}&{ch + dl}&{ci + dm}&{cj + dn} \\
{ej + fk}&{eh + fl}&{ei + fm}&{ej + fn}
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
o&p \\
q&r \\
s&t \\
u&v
\end{array}} \right] \\
= \left[ {\begin{array}{*{20}{c}}
{\left( {ag + bk} \right)o + \left( {ah + bl} \right)q + \left( {ai + bm} \right)s + \left( {aj + bn} \right)u}&{\left( {ag + bk} \right)p + \left( {ah + bl} \right)r + \left( {ai + bm} \right)t + \left( {aj + bn} \right)v} \\
{\left( {cg + dk} \right)o + \left( {ch + dl} \right)q + \left( {ci + dm} \right)s + \left( {cj + dn} \right)u}&{\left( {cg + dk} \right)p + \left( {ch + dl} \right)r + \left( {ci + dm} \right)t + \left( {cj + dn} \right)v} \\
{\left( {ej + fk} \right)o + \left( {eh + fl} \right)q + \left( {ei + fm} \right)s + \left( {ej + fn} \right)u}&{\left( {ej + fk} \right)p + \left( {eh + fl} \right)r + \left( {ei + fm} \right)t + \left( {ej + fn} \right)v}
\end{array}} \right] \\
= \left[ {\begin{array}{*{20}{c}}
{ago + bko + ahq + blq + ais + bms + aju + bnu}&{agp + bkp + ahr + blr + ait + bmt + ajv + bnv} \\
{cgo + dko + chq + dlq + cis + dms + cju + dnu}&{cgp + dkp + chr + dlr + cit + dmt + cjv + dnv} \\
{ejo + fko + ehq + flq + eis + fms + eju + fnu}&{ejp + fkp + ehr + flr + eit + fmt + ejv + fnv}
\end{array}} \right] \\
\]
Now we will evaluate the RHS, i.e. $A \times \left( {B \times C} \right)$.
$A \times \left( {B \times C} \right) = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&d \\
e&f
\end{array}} \right] \times \left( {\left[ {\begin{array}{*{20}{c}}
g&h&i&j \\
k&l&m&n
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
o&p \\
q&r \\
s&t \\
u&v
\end{array}} \right]} \right)$
We can simplify this as,
\[
\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d \\
e&f
\end{array}} \right] \times \left( {\left[ {\begin{array}{*{20}{c}}
g&h&i&j \\
k&l&m&n
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
o&p \\
q&r \\
s&t \\
u&v
\end{array}} \right]} \right) \\
= \left[ {\begin{array}{*{20}{c}}
a&b \\
c&d \\
e&f
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
{go + hq + is + ju}&{gp + hr + it + jv} \\
{ko + lq + ms + nu}&{kp + lr + mt + nv}
\end{array}} \right] \\
= \left[ {\begin{array}{*{20}{c}}
{a\left( {go + hq + is + ju} \right) + b\left( {ko + lq + ms + nu} \right)}&{a\left( {gp + hr + it + jv} \right) + b\left( {kp + lr + mt + nv} \right)} \\
{c\left( {go + hq + is + ju} \right) + d\left( {ko + lq + ms + nu} \right)}&{c\left( {gp + hr + it + jv} \right) + d\left( {kp + lr + mt + nv} \right)} \\
{e\left( {go + hq + is + ju} \right) + f\left( {ko + lq + ms + nu} \right)}&{e\left( {gp + hr + it + jv} \right) + f\left( {kp + lr + mt + nv} \right)}
\end{array}} \right] \\
= \left[ {\begin{array}{*{20}{c}}
{ago + ahq + ais + aju + bko + blq + bms + bnu}&{agp + ahr + ait + ajv + bkp + blr + bmt + bnv} \\
{cgo + chq + cis + cju + dko + dlq + dms + dnu}&{cgp + chr + cit + cjv + dkp + dlr + dmt + dnv} \\
{ejo + ehq + eis + eju + fko + flq + fms + fnu}&{ejp + ehr + eit + ejv + fkp + flr + fmt + fnv}
\end{array}} \right] \\
= \left[ {\begin{array}{*{20}{c}}
{ago + bko + ahq + blq + ais + bms + aju + bnu}&{agp + bkp + ahr + blr + ait + bmt + ajv + bnv} \\
{cgo + dko + chq + dlq + cis + dms + cju + dnu}&{cgp + dkp + chr + dlr + cit + dmt + cjv + dnv} \\
{ejo + fko + ehq + flq + eis + fms + eju + fnu}&{ejp + fkp + ehr + flr + eit + fmt + ejv + fnv}
\end{array}} \right] \\
\]
We can observe that we got $\left( {A \times B} \right) \times C = A \times \left( {B \times C} \right)$.
Hence we can say that matrix multiplication is associative.
Note: In this problem, we have used the associative property, which says the multiplication of any three matrices is same,$\left( {A \times B} \right) \times C = A \times \left( {B \times C} \right)$ , either we multiply first two matrices and then multiply it with third or we multiply last two matrices and then multiply it with the first.
Complete step by step solution:
We have to check whether the matrix multiplication follows associative property or not.
For any three given matrices $A$, $B$ and $C$, the associative property is given as,
$\left( {A \times B} \right) \times C = A \times \left( {B \times C} \right)$
We can assume three matrices with general terms as,
\[
A = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&d \\
e&f
\end{array}} \right] \\
B = \left[ {\begin{array}{*{20}{c}}
g&h&i&j \\
k&l&m&n
\end{array}} \right] \\
C = \left[ {\begin{array}{*{20}{c}}
o&p \\
q&r \\
s&t \\
u&v
\end{array}} \right] \\
\]
While assuming the order of the matrices we have to make sure that calculation of both $\left( {A \times B} \right) \times C$ and $A \times \left( {B \times C} \right)$ is possible.
Now first we evaluate the LHS, i.e. $\left( {A \times B} \right) \times C$.
$\left( {A \times B} \right) \times C = \left( {\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d \\
e&f
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
g&h&i&j \\
k&l&m&n
\end{array}} \right]} \right) \times \left[ {\begin{array}{*{20}{c}}
o&p \\
q&r \\
s&t \\
u&v
\end{array}} \right]$
We can simplify this as,
\[
\left( {\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d \\
e&f
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
g&h&i&j \\
k&l&m&n
\end{array}} \right]} \right) \times \left[ {\begin{array}{*{20}{c}}
o&p \\
q&r \\
s&t \\
u&v
\end{array}} \right] \\
= \left[ {\begin{array}{*{20}{c}}
{ag + bk}&{ah + bl}&{ai + bm}&{aj + bn} \\
{cg + dk}&{ch + dl}&{ci + dm}&{cj + dn} \\
{ej + fk}&{eh + fl}&{ei + fm}&{ej + fn}
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
o&p \\
q&r \\
s&t \\
u&v
\end{array}} \right] \\
= \left[ {\begin{array}{*{20}{c}}
{\left( {ag + bk} \right)o + \left( {ah + bl} \right)q + \left( {ai + bm} \right)s + \left( {aj + bn} \right)u}&{\left( {ag + bk} \right)p + \left( {ah + bl} \right)r + \left( {ai + bm} \right)t + \left( {aj + bn} \right)v} \\
{\left( {cg + dk} \right)o + \left( {ch + dl} \right)q + \left( {ci + dm} \right)s + \left( {cj + dn} \right)u}&{\left( {cg + dk} \right)p + \left( {ch + dl} \right)r + \left( {ci + dm} \right)t + \left( {cj + dn} \right)v} \\
{\left( {ej + fk} \right)o + \left( {eh + fl} \right)q + \left( {ei + fm} \right)s + \left( {ej + fn} \right)u}&{\left( {ej + fk} \right)p + \left( {eh + fl} \right)r + \left( {ei + fm} \right)t + \left( {ej + fn} \right)v}
\end{array}} \right] \\
= \left[ {\begin{array}{*{20}{c}}
{ago + bko + ahq + blq + ais + bms + aju + bnu}&{agp + bkp + ahr + blr + ait + bmt + ajv + bnv} \\
{cgo + dko + chq + dlq + cis + dms + cju + dnu}&{cgp + dkp + chr + dlr + cit + dmt + cjv + dnv} \\
{ejo + fko + ehq + flq + eis + fms + eju + fnu}&{ejp + fkp + ehr + flr + eit + fmt + ejv + fnv}
\end{array}} \right] \\
\]
Now we will evaluate the RHS, i.e. $A \times \left( {B \times C} \right)$.
$A \times \left( {B \times C} \right) = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&d \\
e&f
\end{array}} \right] \times \left( {\left[ {\begin{array}{*{20}{c}}
g&h&i&j \\
k&l&m&n
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
o&p \\
q&r \\
s&t \\
u&v
\end{array}} \right]} \right)$
We can simplify this as,
\[
\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d \\
e&f
\end{array}} \right] \times \left( {\left[ {\begin{array}{*{20}{c}}
g&h&i&j \\
k&l&m&n
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
o&p \\
q&r \\
s&t \\
u&v
\end{array}} \right]} \right) \\
= \left[ {\begin{array}{*{20}{c}}
a&b \\
c&d \\
e&f
\end{array}} \right] \times \left[ {\begin{array}{*{20}{c}}
{go + hq + is + ju}&{gp + hr + it + jv} \\
{ko + lq + ms + nu}&{kp + lr + mt + nv}
\end{array}} \right] \\
= \left[ {\begin{array}{*{20}{c}}
{a\left( {go + hq + is + ju} \right) + b\left( {ko + lq + ms + nu} \right)}&{a\left( {gp + hr + it + jv} \right) + b\left( {kp + lr + mt + nv} \right)} \\
{c\left( {go + hq + is + ju} \right) + d\left( {ko + lq + ms + nu} \right)}&{c\left( {gp + hr + it + jv} \right) + d\left( {kp + lr + mt + nv} \right)} \\
{e\left( {go + hq + is + ju} \right) + f\left( {ko + lq + ms + nu} \right)}&{e\left( {gp + hr + it + jv} \right) + f\left( {kp + lr + mt + nv} \right)}
\end{array}} \right] \\
= \left[ {\begin{array}{*{20}{c}}
{ago + ahq + ais + aju + bko + blq + bms + bnu}&{agp + ahr + ait + ajv + bkp + blr + bmt + bnv} \\
{cgo + chq + cis + cju + dko + dlq + dms + dnu}&{cgp + chr + cit + cjv + dkp + dlr + dmt + dnv} \\
{ejo + ehq + eis + eju + fko + flq + fms + fnu}&{ejp + ehr + eit + ejv + fkp + flr + fmt + fnv}
\end{array}} \right] \\
= \left[ {\begin{array}{*{20}{c}}
{ago + bko + ahq + blq + ais + bms + aju + bnu}&{agp + bkp + ahr + blr + ait + bmt + ajv + bnv} \\
{cgo + dko + chq + dlq + cis + dms + cju + dnu}&{cgp + dkp + chr + dlr + cit + dmt + cjv + dnv} \\
{ejo + fko + ehq + flq + eis + fms + eju + fnu}&{ejp + fkp + ehr + flr + eit + fmt + ejv + fnv}
\end{array}} \right] \\
\]
We can observe that we got $\left( {A \times B} \right) \times C = A \times \left( {B \times C} \right)$.
Hence we can say that matrix multiplication is associative.
Note: In this problem, we have used the associative property, which says the multiplication of any three matrices is same,$\left( {A \times B} \right) \times C = A \times \left( {B \times C} \right)$ , either we multiply first two matrices and then multiply it with third or we multiply last two matrices and then multiply it with the first.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

