
Check whether the function defined by $f\left( x+\lambda \right)=1+\sqrt{2f\left( x \right)-{{f}^{2}}\left( x \right)},x\in \mathsf{\mathbb{R}},\lambda >0$ is periodic or not. If yes, then find its period. \[\]
Answer
483.6k+ views
Hint: We use the domain and range of the square root function to find the range of $f\left( x \right)$. We take $f\left( x+\lambda \right)-1=\sqrt{2f\left( x \right)-{{f}^{2}}\left( x \right)}$ and square both side, form a complete square ${{\left( f\left( x \right)-1 \right)}^{2}}$, replace $x$ with $x+\lambda $ and simplify to get squared expressions both side We take square root both side to get absolute values and use the range of $f\left( x \right)$ to get the period.
Complete step-by-step solution
We know that if the function $f$ is periodic then there exists nonzero constant $T$ such that
\[f\left( x+T \right)=f\left( x \right)\]
We are given the real valued function;
\[f\left( x+\lambda \right)=1+\sqrt{2f\left( x \right)-{{f}^{2}}\left( x \right)},x\in \mathsf{\mathbb{R}},\lambda >0\]
We know that the square root also returns non-negative values. So we have $\sqrt{2f\left( x \right)-{{f}^{2}}\left( x \right)}\ge 0$, then we have;
\[\begin{align}
& f\left( x+\lambda \right)\ge 1+0 \\
& \Rightarrow f\left( x+\lambda \right)\ge 1 \\
\end{align}\]
Since square root is a strictly increasing function with given condition $\lambda >0$ we have;
\[f\left( x \right)\ge 1....\left( 1 \right)\]
We know from the definition of square root function that the square root takes only non-negative values. So we have;
\[\begin{align}
& 2f\left( x \right)-{{f}^{2}}\left( x \right)\ge 0 \\
& \Rightarrow f\left( x \right)\left( 2-f\left( x \right) \right)\ge 0 \\
\end{align}\]
We multiply both side negative sign to have;
\[\Rightarrow f\left( x \right)\left( f\left( x \right)-2 \right)\le 0.\]
We see from the above inequality that either we have $f\left( x \right)\ge 0,f\left( x \right)-2\le 0$ or $f\left( x \right)\le 0,f\left( x \right)-2\ge 0$. The latter deduction $f\left( x \right)\le 0,f\left( x \right)-2\ge 0$ is not possible since we have already obtained $f\left( x \right)\ge 1$. So we have;
\[f\left( x \right)\ge 0,f\left( x \right)-2\le 0.....\left( 2 \right)\]
We take intersection of intervals or use wavy curve method to find the range of the functions $f\left( x \right)$ as
\[f\left( x \right)\in \left[ 1,2 \right]\]
Now let us consider
\[\begin{align}
& f\left( x+\lambda \right)=1+\sqrt{2f\left( x \right)-{{f}^{2}}\left( x \right)} \\
& \Rightarrow f\left( x+\lambda \right)-1=\sqrt{2f\left( x \right)-{{f}^{2}}\left( x \right)} \\
\end{align}\]
We take square both sides to have;
\[\Rightarrow {{\left( f\left( x+\lambda \right)-1 \right)}^{2}}=2f\left( x \right)-{{f}^{2}}\left( x \right)\]
Let us add $-1$ and $1$ in the right hand side of the above equation to get a complete square as;
\[\begin{align}
& \Rightarrow {{\left( f\left( x+\lambda \right)-1 \right)}^{2}}=2f\left( x \right)-{{f}^{2}}\left( x \right)+1-1 \\
& \Rightarrow {{\left( f\left( x+\lambda \right)-1 \right)}^{2}}=1-\left( {{f}^{2}}\left( x \right)-2f\left( x \right)+1 \right) \\
& \Rightarrow {{\left( f\left( x+\lambda \right)-1 \right)}^{2}}=1-{{\left( f\left( x \right)-1 \right)}^{2}}.....\left( 3 \right) \\
\end{align}\]
Now let us replace $x$ with $x+\lambda $ in the above step and have;
\[\Rightarrow {{\left\{ f\left( x+2\lambda \right)-1 \right\}}^{2}}=1-{{\left( f\left( x+\lambda \right)-1 \right)}^{2}}\]
We put the value of ${{\left( f\left( x+\lambda \right)-1 \right)}^{2}}$ in the right hand side of the equation obtained from (3). We have;
\[\begin{align}
& \Rightarrow {{\left\{ f\left( x+2\lambda \right)-1 \right\}}^{2}}=1-\left\{ 1-{{\left( f\left( x \right)-1 \right)}^{2}} \right\} \\
& \Rightarrow {{\left\{ f\left( x+2\lambda \right)-1 \right\}}^{2}}=1-1+{{\left( f\left( x \right)-1 \right)}^{2}} \\
& \Rightarrow {{\left\{ f\left( x+2\lambda \right)-1 \right\}}^{2}}={{\left( f\left( x \right)-1 \right)}^{2}} \\
\end{align}\]
Let us take square root both side and have;
\[\left| f\left( x+2\lambda \right)-1 \right|=\left| f\left( x \right)-1 \right|\]
Since the range of $f\left( x \right)$ is $\left[ 1,2 \right]$ $f\left( x+2\lambda \right)-1\ge 1-1=0$ and $f\left( x \right)-1\ge 1-1=0$. So we deduce the absolute values as;
\[\begin{align}
& f\left( x+2\lambda \right)-1=f\left( x \right)-1 \\
& \Rightarrow f\left( x+2\lambda \right)=f\left( x \right) \\
\end{align}\]
So the function is periodic and the period is $2\lambda$. \[\]
Note: We note that the least period if positive is called the fundamental period of function. Since We have used the identity $\sqrt{{{\left( f\left( x \right) \right)}^{2}}}=\left| f\left( x \right) \right|$ here with any real valued function $f\left( x \right)$. We must be careful when we are finding the range of $f\left( x \right)$ not $\left[ 0,2 \right]$. The square root function strictly increases in the domain $\left[ 0,\infty \right)$ because if $x > y $then $\sqrt{x} > \sqrt{y}$.
Complete step-by-step solution
We know that if the function $f$ is periodic then there exists nonzero constant $T$ such that
\[f\left( x+T \right)=f\left( x \right)\]
We are given the real valued function;
\[f\left( x+\lambda \right)=1+\sqrt{2f\left( x \right)-{{f}^{2}}\left( x \right)},x\in \mathsf{\mathbb{R}},\lambda >0\]
We know that the square root also returns non-negative values. So we have $\sqrt{2f\left( x \right)-{{f}^{2}}\left( x \right)}\ge 0$, then we have;
\[\begin{align}
& f\left( x+\lambda \right)\ge 1+0 \\
& \Rightarrow f\left( x+\lambda \right)\ge 1 \\
\end{align}\]
Since square root is a strictly increasing function with given condition $\lambda >0$ we have;
\[f\left( x \right)\ge 1....\left( 1 \right)\]
We know from the definition of square root function that the square root takes only non-negative values. So we have;
\[\begin{align}
& 2f\left( x \right)-{{f}^{2}}\left( x \right)\ge 0 \\
& \Rightarrow f\left( x \right)\left( 2-f\left( x \right) \right)\ge 0 \\
\end{align}\]
We multiply both side negative sign to have;
\[\Rightarrow f\left( x \right)\left( f\left( x \right)-2 \right)\le 0.\]
We see from the above inequality that either we have $f\left( x \right)\ge 0,f\left( x \right)-2\le 0$ or $f\left( x \right)\le 0,f\left( x \right)-2\ge 0$. The latter deduction $f\left( x \right)\le 0,f\left( x \right)-2\ge 0$ is not possible since we have already obtained $f\left( x \right)\ge 1$. So we have;
\[f\left( x \right)\ge 0,f\left( x \right)-2\le 0.....\left( 2 \right)\]
We take intersection of intervals or use wavy curve method to find the range of the functions $f\left( x \right)$ as
\[f\left( x \right)\in \left[ 1,2 \right]\]
Now let us consider
\[\begin{align}
& f\left( x+\lambda \right)=1+\sqrt{2f\left( x \right)-{{f}^{2}}\left( x \right)} \\
& \Rightarrow f\left( x+\lambda \right)-1=\sqrt{2f\left( x \right)-{{f}^{2}}\left( x \right)} \\
\end{align}\]
We take square both sides to have;
\[\Rightarrow {{\left( f\left( x+\lambda \right)-1 \right)}^{2}}=2f\left( x \right)-{{f}^{2}}\left( x \right)\]
Let us add $-1$ and $1$ in the right hand side of the above equation to get a complete square as;
\[\begin{align}
& \Rightarrow {{\left( f\left( x+\lambda \right)-1 \right)}^{2}}=2f\left( x \right)-{{f}^{2}}\left( x \right)+1-1 \\
& \Rightarrow {{\left( f\left( x+\lambda \right)-1 \right)}^{2}}=1-\left( {{f}^{2}}\left( x \right)-2f\left( x \right)+1 \right) \\
& \Rightarrow {{\left( f\left( x+\lambda \right)-1 \right)}^{2}}=1-{{\left( f\left( x \right)-1 \right)}^{2}}.....\left( 3 \right) \\
\end{align}\]
Now let us replace $x$ with $x+\lambda $ in the above step and have;
\[\Rightarrow {{\left\{ f\left( x+2\lambda \right)-1 \right\}}^{2}}=1-{{\left( f\left( x+\lambda \right)-1 \right)}^{2}}\]
We put the value of ${{\left( f\left( x+\lambda \right)-1 \right)}^{2}}$ in the right hand side of the equation obtained from (3). We have;
\[\begin{align}
& \Rightarrow {{\left\{ f\left( x+2\lambda \right)-1 \right\}}^{2}}=1-\left\{ 1-{{\left( f\left( x \right)-1 \right)}^{2}} \right\} \\
& \Rightarrow {{\left\{ f\left( x+2\lambda \right)-1 \right\}}^{2}}=1-1+{{\left( f\left( x \right)-1 \right)}^{2}} \\
& \Rightarrow {{\left\{ f\left( x+2\lambda \right)-1 \right\}}^{2}}={{\left( f\left( x \right)-1 \right)}^{2}} \\
\end{align}\]
Let us take square root both side and have;
\[\left| f\left( x+2\lambda \right)-1 \right|=\left| f\left( x \right)-1 \right|\]
Since the range of $f\left( x \right)$ is $\left[ 1,2 \right]$ $f\left( x+2\lambda \right)-1\ge 1-1=0$ and $f\left( x \right)-1\ge 1-1=0$. So we deduce the absolute values as;
\[\begin{align}
& f\left( x+2\lambda \right)-1=f\left( x \right)-1 \\
& \Rightarrow f\left( x+2\lambda \right)=f\left( x \right) \\
\end{align}\]
So the function is periodic and the period is $2\lambda$. \[\]
Note: We note that the least period if positive is called the fundamental period of function. Since We have used the identity $\sqrt{{{\left( f\left( x \right) \right)}^{2}}}=\left| f\left( x \right) \right|$ here with any real valued function $f\left( x \right)$. We must be careful when we are finding the range of $f\left( x \right)$ not $\left[ 0,2 \right]$. The square root function strictly increases in the domain $\left[ 0,\infty \right)$ because if $x > y $then $\sqrt{x} > \sqrt{y}$.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 4 Maths: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
