
What is capillary action? Derive the formula for rise of liquid in a capillary tube immersed vertically in liquid.
Answer
492.6k+ views
Hint: To define capillarity or capillary action we have to first know what capillarity is. The phenomenon of the rise and fall of a liquid in a capillary tube is called capillary action or capillarity. We can define a capillary tube as a fine tube. When we immerse a liquid in water, the water will rise in the tube.
Complete answer:
When a capillary tube is dipped in a liquid, the liquid level either rises or falls in the capillary tube. The phenomenon of rise or fall of a liquid level in a capillary tube is called capillary or capillary action.
When a liquid rises in a capillary tube, the weight of the column of the liquid of density $\rho $ inside the tube is supported by the upward force of surface tension acting around the circumference of the point of contact.
$\pi {{r}^{2}}\left( h+\dfrac{r}{3} \right)\rho g=T\cos \theta \times 2\pi r$
Then surface tension,
$T=\dfrac{r(h+\dfrac{r}{3})\rho g}{2\cos \theta }$
Where, h is the height of the liquid column above the liquid meniscus.
$\rho $ is the density of the liquid
‘r’ is the inner radius of the capillary tube
$\theta $ is the angle of contact.
Note: Surface tension is the property of a liquid by virtue of which its free surface at rest behaves as an elastic skin or a stretched rubber membrane with a tendency to contract so as to contract as to occupy minimum surface area. The phenomenon of surface tension has been well explained by the molecular theory of matter.
Complete answer:
When a capillary tube is dipped in a liquid, the liquid level either rises or falls in the capillary tube. The phenomenon of rise or fall of a liquid level in a capillary tube is called capillary or capillary action.
When a liquid rises in a capillary tube, the weight of the column of the liquid of density $\rho $ inside the tube is supported by the upward force of surface tension acting around the circumference of the point of contact.
$\pi {{r}^{2}}\left( h+\dfrac{r}{3} \right)\rho g=T\cos \theta \times 2\pi r$
Then surface tension,
$T=\dfrac{r(h+\dfrac{r}{3})\rho g}{2\cos \theta }$
Where, h is the height of the liquid column above the liquid meniscus.
$\rho $ is the density of the liquid
‘r’ is the inner radius of the capillary tube
$\theta $ is the angle of contact.
Note: Surface tension is the property of a liquid by virtue of which its free surface at rest behaves as an elastic skin or a stretched rubber membrane with a tendency to contract so as to contract as to occupy minimum surface area. The phenomenon of surface tension has been well explained by the molecular theory of matter.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

