
Can you simplify \[\cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\ \ldots..\ \left( {cos\ }2^{n}x \right)\] ?
Answer
480.9k+ views
Hint: In this question, we need to simplify the given expression. Sine, cosine and tangent are known as the basic trigonometric function. In order to simplify the given expression ,we need to use the concepts of trigonometric identities. Cosine function is nothing but a ratio of the adjacent side of a right angle to the hypotenuse of the right angle. With the help of double angle identity,first , we need to find \[\sin (16x)\] then we need to find \[\sin (8x)\] . By proceeding this, we can easily simplify the given expression.
Double angle identity :
\[\sin (2x)\ = 2\sin (x)\cos (x)\]
Complete step-by-step solution:
Given,
\[\cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\ \ldots..\ \left( {cos\ }2^{n}x \right)\]
Let us consider the given expression as \[f(x)\],
\[f(x)\ = \cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\ \ldots..\ ({cos\ }2^{n}x)\]
By using double angle identity, \[\sin (2x)\ = 2\sin (x)\cos (x)\]
When
\[\sin (16x)\ = 2\sin (8x)\ \cos (8x)\]
Now we need to find \[\sin (8x)\] ,
We get
\[= \ 2 \times 2\sin \left( 4x \right)\cos\left( 4x \right)\cos\left( 8x \right)\]
Now we can find \[\sin (4x)\],
We get,
\[= \ 2 \times 2 \times 2\sin \left( 2x \right)\cos\left( 2x \right)\cos\left( 4x \right)\cos\left( 8x \right)\]
Then finally we need to find \[\sin (2x)\] ,
\[= \ 2 \times 2 \times 2 \times 2\sin (x)\ \cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\]
On simplifying,
We get,
\[\sin \left( 16x \right) = 2^{4}\sin\left( x \right)\cos\left( x \right)\cos\left( 2x \right)\cos\left( 4x \right)\cos\left( 8x \right)\]
\[= \ \cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x) = \dfrac{\sin\left( 16x \right)}{2^{4}\sin\left( x \right)}\]
If we generalize the double angle identity ,
We get,
\[sin\left( 2^{n + 1}x \right) = 2sin\left( 2^{n}x \right)\cos\left( 2^{n}x \right)\]
Now we need to find \[\sin\left( 2^{n}x \right)\] ,
\[= \ 2 \times 2sin\left( 2^{n – 1}x \right)\cos\left( 2^{n – 1}x \right)\cos\left( 2^{n}x \right)\]
On proceeding this,
.
.
.
We get,
\[= \ 2^{n}\cos\left( 2^{n}x \right)cos(2^{n – 1})\cos\left( 4x \right)\cos\left( 2x \right)\sin\left( 2x \right)\]
Now we can find \[sin(2x)\] ,
\[= \ 2^{n + 1}\cos\left( 2^{n}x \right)cos(2^{n – 1})\ldots\ cos\left( 4x \right)\cos\left( 2x \right)\cos\left( x \right)\sin\left( x \right)\]
On solving
We get,
\[\Rightarrow \ 2^{n + 1}\sin \left( x \right)\cos\left( x \right)\cos\left( 2x \right)\cos\left( 4x \right)\cos\left( 8x \right)\ldots..\left( cos\ 2^{n}x \right)\]
Thus,
\[\sin \left( 2^{n + 1}x \right) = \ 2^{n + 1}\sin\left( x \right)\cos\left( x \right)\cos\left( 2x \right)\cos\left( 4x \right)\cos\left( 8x \right)\ldots..\left( cos\ 2^{n}x \right)\]
\[\Rightarrow \ cos\left( x \right)\cos\left( 2x \right)\cos\left( 4x \right)\cos\left( 8x \right)\ldots..\left( cos\ 2^{n}x \right) = \dfrac{\sin\left( 2^{n + 1}x \right)}{2^{n + 1}\sin\left( x \right)}\]
Thus we get \[\cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\ \ldots..\left( cos\ 2^{n}x \right)\] is equal to \[\dfrac{\sin\left( 2^{n + 1}x \right)}{2^{\left( n + 1 \right)}\ \sin(x)}\]
Final answer :
\[\cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\ \ldots..\left( cos\ 2^{n}x \right)\] is equal to \[\dfrac{\sin\left( 2^{n + 1}x \right)}{2^{\left( n + 1 \right)}\ \sin(x)}\]
Note: The concept used to simplify the given expression is trigonometric identities. Trigonometric identities are nothing but they involve trigonometric functions including variables and constants. Sine is nothing but it is defined as a ratio of the opposite side of a right angle to the hypotenuse of the right angle. The common technique used in this problem is the substitution rule with the use of trigonometric identities such as double angle identity.
Double angle identity :
\[\sin (2x)\ = 2\sin (x)\cos (x)\]
Complete step-by-step solution:
Given,
\[\cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\ \ldots..\ \left( {cos\ }2^{n}x \right)\]
Let us consider the given expression as \[f(x)\],
\[f(x)\ = \cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\ \ldots..\ ({cos\ }2^{n}x)\]
By using double angle identity, \[\sin (2x)\ = 2\sin (x)\cos (x)\]
When
\[\sin (16x)\ = 2\sin (8x)\ \cos (8x)\]
Now we need to find \[\sin (8x)\] ,
We get
\[= \ 2 \times 2\sin \left( 4x \right)\cos\left( 4x \right)\cos\left( 8x \right)\]
Now we can find \[\sin (4x)\],
We get,
\[= \ 2 \times 2 \times 2\sin \left( 2x \right)\cos\left( 2x \right)\cos\left( 4x \right)\cos\left( 8x \right)\]
Then finally we need to find \[\sin (2x)\] ,
\[= \ 2 \times 2 \times 2 \times 2\sin (x)\ \cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\]
On simplifying,
We get,
\[\sin \left( 16x \right) = 2^{4}\sin\left( x \right)\cos\left( x \right)\cos\left( 2x \right)\cos\left( 4x \right)\cos\left( 8x \right)\]
\[= \ \cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x) = \dfrac{\sin\left( 16x \right)}{2^{4}\sin\left( x \right)}\]
If we generalize the double angle identity ,
We get,
\[sin\left( 2^{n + 1}x \right) = 2sin\left( 2^{n}x \right)\cos\left( 2^{n}x \right)\]
Now we need to find \[\sin\left( 2^{n}x \right)\] ,
\[= \ 2 \times 2sin\left( 2^{n – 1}x \right)\cos\left( 2^{n – 1}x \right)\cos\left( 2^{n}x \right)\]
On proceeding this,
.
.
.
We get,
\[= \ 2^{n}\cos\left( 2^{n}x \right)cos(2^{n – 1})\cos\left( 4x \right)\cos\left( 2x \right)\sin\left( 2x \right)\]
Now we can find \[sin(2x)\] ,
\[= \ 2^{n + 1}\cos\left( 2^{n}x \right)cos(2^{n – 1})\ldots\ cos\left( 4x \right)\cos\left( 2x \right)\cos\left( x \right)\sin\left( x \right)\]
On solving
We get,
\[\Rightarrow \ 2^{n + 1}\sin \left( x \right)\cos\left( x \right)\cos\left( 2x \right)\cos\left( 4x \right)\cos\left( 8x \right)\ldots..\left( cos\ 2^{n}x \right)\]
Thus,
\[\sin \left( 2^{n + 1}x \right) = \ 2^{n + 1}\sin\left( x \right)\cos\left( x \right)\cos\left( 2x \right)\cos\left( 4x \right)\cos\left( 8x \right)\ldots..\left( cos\ 2^{n}x \right)\]
\[\Rightarrow \ cos\left( x \right)\cos\left( 2x \right)\cos\left( 4x \right)\cos\left( 8x \right)\ldots..\left( cos\ 2^{n}x \right) = \dfrac{\sin\left( 2^{n + 1}x \right)}{2^{n + 1}\sin\left( x \right)}\]
Thus we get \[\cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\ \ldots..\left( cos\ 2^{n}x \right)\] is equal to \[\dfrac{\sin\left( 2^{n + 1}x \right)}{2^{\left( n + 1 \right)}\ \sin(x)}\]
Final answer :
\[\cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\ \ldots..\left( cos\ 2^{n}x \right)\] is equal to \[\dfrac{\sin\left( 2^{n + 1}x \right)}{2^{\left( n + 1 \right)}\ \sin(x)}\]
Note: The concept used to simplify the given expression is trigonometric identities. Trigonometric identities are nothing but they involve trigonometric functions including variables and constants. Sine is nothing but it is defined as a ratio of the opposite side of a right angle to the hypotenuse of the right angle. The common technique used in this problem is the substitution rule with the use of trigonometric identities such as double angle identity.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

