
Can you simplify \[\cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\ \ldots..\ \left( {cos\ }2^{n}x \right)\] ?
Answer
480k+ views
Hint: In this question, we need to simplify the given expression. Sine, cosine and tangent are known as the basic trigonometric function. In order to simplify the given expression ,we need to use the concepts of trigonometric identities. Cosine function is nothing but a ratio of the adjacent side of a right angle to the hypotenuse of the right angle. With the help of double angle identity,first , we need to find \[\sin (16x)\] then we need to find \[\sin (8x)\] . By proceeding this, we can easily simplify the given expression.
Double angle identity :
\[\sin (2x)\ = 2\sin (x)\cos (x)\]
Complete step-by-step solution:
Given,
\[\cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\ \ldots..\ \left( {cos\ }2^{n}x \right)\]
Let us consider the given expression as \[f(x)\],
\[f(x)\ = \cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\ \ldots..\ ({cos\ }2^{n}x)\]
By using double angle identity, \[\sin (2x)\ = 2\sin (x)\cos (x)\]
When
\[\sin (16x)\ = 2\sin (8x)\ \cos (8x)\]
Now we need to find \[\sin (8x)\] ,
We get
\[= \ 2 \times 2\sin \left( 4x \right)\cos\left( 4x \right)\cos\left( 8x \right)\]
Now we can find \[\sin (4x)\],
We get,
\[= \ 2 \times 2 \times 2\sin \left( 2x \right)\cos\left( 2x \right)\cos\left( 4x \right)\cos\left( 8x \right)\]
Then finally we need to find \[\sin (2x)\] ,
\[= \ 2 \times 2 \times 2 \times 2\sin (x)\ \cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\]
On simplifying,
We get,
\[\sin \left( 16x \right) = 2^{4}\sin\left( x \right)\cos\left( x \right)\cos\left( 2x \right)\cos\left( 4x \right)\cos\left( 8x \right)\]
\[= \ \cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x) = \dfrac{\sin\left( 16x \right)}{2^{4}\sin\left( x \right)}\]
If we generalize the double angle identity ,
We get,
\[sin\left( 2^{n + 1}x \right) = 2sin\left( 2^{n}x \right)\cos\left( 2^{n}x \right)\]
Now we need to find \[\sin\left( 2^{n}x \right)\] ,
\[= \ 2 \times 2sin\left( 2^{n – 1}x \right)\cos\left( 2^{n – 1}x \right)\cos\left( 2^{n}x \right)\]
On proceeding this,
.
.
.
We get,
\[= \ 2^{n}\cos\left( 2^{n}x \right)cos(2^{n – 1})\cos\left( 4x \right)\cos\left( 2x \right)\sin\left( 2x \right)\]
Now we can find \[sin(2x)\] ,
\[= \ 2^{n + 1}\cos\left( 2^{n}x \right)cos(2^{n – 1})\ldots\ cos\left( 4x \right)\cos\left( 2x \right)\cos\left( x \right)\sin\left( x \right)\]
On solving
We get,
\[\Rightarrow \ 2^{n + 1}\sin \left( x \right)\cos\left( x \right)\cos\left( 2x \right)\cos\left( 4x \right)\cos\left( 8x \right)\ldots..\left( cos\ 2^{n}x \right)\]
Thus,
\[\sin \left( 2^{n + 1}x \right) = \ 2^{n + 1}\sin\left( x \right)\cos\left( x \right)\cos\left( 2x \right)\cos\left( 4x \right)\cos\left( 8x \right)\ldots..\left( cos\ 2^{n}x \right)\]
\[\Rightarrow \ cos\left( x \right)\cos\left( 2x \right)\cos\left( 4x \right)\cos\left( 8x \right)\ldots..\left( cos\ 2^{n}x \right) = \dfrac{\sin\left( 2^{n + 1}x \right)}{2^{n + 1}\sin\left( x \right)}\]
Thus we get \[\cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\ \ldots..\left( cos\ 2^{n}x \right)\] is equal to \[\dfrac{\sin\left( 2^{n + 1}x \right)}{2^{\left( n + 1 \right)}\ \sin(x)}\]
Final answer :
\[\cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\ \ldots..\left( cos\ 2^{n}x \right)\] is equal to \[\dfrac{\sin\left( 2^{n + 1}x \right)}{2^{\left( n + 1 \right)}\ \sin(x)}\]
Note: The concept used to simplify the given expression is trigonometric identities. Trigonometric identities are nothing but they involve trigonometric functions including variables and constants. Sine is nothing but it is defined as a ratio of the opposite side of a right angle to the hypotenuse of the right angle. The common technique used in this problem is the substitution rule with the use of trigonometric identities such as double angle identity.
Double angle identity :
\[\sin (2x)\ = 2\sin (x)\cos (x)\]
Complete step-by-step solution:
Given,
\[\cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\ \ldots..\ \left( {cos\ }2^{n}x \right)\]
Let us consider the given expression as \[f(x)\],
\[f(x)\ = \cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\ \ldots..\ ({cos\ }2^{n}x)\]
By using double angle identity, \[\sin (2x)\ = 2\sin (x)\cos (x)\]
When
\[\sin (16x)\ = 2\sin (8x)\ \cos (8x)\]
Now we need to find \[\sin (8x)\] ,
We get
\[= \ 2 \times 2\sin \left( 4x \right)\cos\left( 4x \right)\cos\left( 8x \right)\]
Now we can find \[\sin (4x)\],
We get,
\[= \ 2 \times 2 \times 2\sin \left( 2x \right)\cos\left( 2x \right)\cos\left( 4x \right)\cos\left( 8x \right)\]
Then finally we need to find \[\sin (2x)\] ,
\[= \ 2 \times 2 \times 2 \times 2\sin (x)\ \cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\]
On simplifying,
We get,
\[\sin \left( 16x \right) = 2^{4}\sin\left( x \right)\cos\left( x \right)\cos\left( 2x \right)\cos\left( 4x \right)\cos\left( 8x \right)\]
\[= \ \cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x) = \dfrac{\sin\left( 16x \right)}{2^{4}\sin\left( x \right)}\]
If we generalize the double angle identity ,
We get,
\[sin\left( 2^{n + 1}x \right) = 2sin\left( 2^{n}x \right)\cos\left( 2^{n}x \right)\]
Now we need to find \[\sin\left( 2^{n}x \right)\] ,
\[= \ 2 \times 2sin\left( 2^{n – 1}x \right)\cos\left( 2^{n – 1}x \right)\cos\left( 2^{n}x \right)\]
On proceeding this,
.
.
.
We get,
\[= \ 2^{n}\cos\left( 2^{n}x \right)cos(2^{n – 1})\cos\left( 4x \right)\cos\left( 2x \right)\sin\left( 2x \right)\]
Now we can find \[sin(2x)\] ,
\[= \ 2^{n + 1}\cos\left( 2^{n}x \right)cos(2^{n – 1})\ldots\ cos\left( 4x \right)\cos\left( 2x \right)\cos\left( x \right)\sin\left( x \right)\]
On solving
We get,
\[\Rightarrow \ 2^{n + 1}\sin \left( x \right)\cos\left( x \right)\cos\left( 2x \right)\cos\left( 4x \right)\cos\left( 8x \right)\ldots..\left( cos\ 2^{n}x \right)\]
Thus,
\[\sin \left( 2^{n + 1}x \right) = \ 2^{n + 1}\sin\left( x \right)\cos\left( x \right)\cos\left( 2x \right)\cos\left( 4x \right)\cos\left( 8x \right)\ldots..\left( cos\ 2^{n}x \right)\]
\[\Rightarrow \ cos\left( x \right)\cos\left( 2x \right)\cos\left( 4x \right)\cos\left( 8x \right)\ldots..\left( cos\ 2^{n}x \right) = \dfrac{\sin\left( 2^{n + 1}x \right)}{2^{n + 1}\sin\left( x \right)}\]
Thus we get \[\cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\ \ldots..\left( cos\ 2^{n}x \right)\] is equal to \[\dfrac{\sin\left( 2^{n + 1}x \right)}{2^{\left( n + 1 \right)}\ \sin(x)}\]
Final answer :
\[\cos (x)\ \cos (2x)\ \cos (4x)\ \cos (8x)\ \ldots..\left( cos\ 2^{n}x \right)\] is equal to \[\dfrac{\sin\left( 2^{n + 1}x \right)}{2^{\left( n + 1 \right)}\ \sin(x)}\]
Note: The concept used to simplify the given expression is trigonometric identities. Trigonometric identities are nothing but they involve trigonometric functions including variables and constants. Sine is nothing but it is defined as a ratio of the opposite side of a right angle to the hypotenuse of the right angle. The common technique used in this problem is the substitution rule with the use of trigonometric identities such as double angle identity.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

