
Can you show that ${{z}^{4}}+64$ can be factorized into the two real quadratic factors of the form ${{z}^{2}}+az+8$ and ${{z}^{2}}+bz+8$ but cannot be factored into two real quadratic factors of the form ${{z}^{2}}+bz+16$ and ${{z}^{2}}+bz+4$?
Answer
546.6k+ views
Hint: we have to show the real quadratic factors of ${{z} ^ {4}} +64$. Before solving the question we should know about the $z$. Here the given $z$ is the complex number and $4$ is the power of that complex number. Factors of complex numbers mean every polynomial can be factored into a product of linear factors or we can say every polynomial of degree n has n roots, counted according to their multiplicity.
Complete step by step solution:
Now the given question is:
$\Rightarrow {{z} ^ {4}} +64$
The factors of the given equation is
$\Rightarrow {{z}^{4}}+64=\left( z-{{z}_{0}} \right)\left( z-{{z}_{1}} \right)\left( z-{{z}_{2}} \right)\left( z-{{z}_{3}} \right)$
Now puts the above equation equals to zero
$\Rightarrow {{z}^{4}}+64=\left( z-{{z}_{0}} \right)\left( z-{{z}_{1}} \right)\left( z-{{z}_{2}} \right)\left( z-{{z}_{3}} \right)=0$
On solving the above part, we get
$\Rightarrow {{z} ^ {4}} =-64$
Here we can write $64$ in the power of $2$, we get
$\Rightarrow {{z}^{4}}=-64={{2}^{6}}{{e}^{\iota \pi +\iota 2k\pi }}$
Here by using De Moivre's identity we can write
$\Rightarrow {{e} ^ {\iota \pi}}=\cos \pi +\iota \sin \pi =-1$
Now again solving we get
$z=\sqrt[4]{{{2}^{6}}}{{e}^{\iota \left( \dfrac{\pi }{4}+k\dfrac{\pi }{2} \right)}}$
Now we will obtain these for $k=0, 1, 2, 3$
Therefore by using the factors of $z$ we get,
$\Rightarrow {{z}_{0}}=\sqrt[4]{{{2}^{6}}}{{e}^{\iota \dfrac{\pi }{2}}}=\sqrt[4]{{{2}^{6}}}\left( \cos \dfrac{\pi }{4}+\iota \sin \dfrac{\pi }{4} \right)=\sqrt[4]{{{2}^{6}}}\dfrac{1+\iota }{\sqrt{2}}$
$\Rightarrow {{z}_{1}}=\sqrt[4]{{{2}^{6}}}{{e}^{\iota \left( \dfrac{\pi }{4}+\dfrac{\pi }{2} \right)}}$
Now apply the De Moivre`s law, we get
$\begin {align}
& \Rightarrow {{z}_{1}}=\sqrt[4]{{{2}^{6}}}{{e}^{\iota \dfrac{3\pi }{4}}} \\
& \Rightarrow {{z}_{1}}=\sqrt[4]{{{2}^{6}}}\left( \cos \dfrac{3\pi }{4}+\iota \sin \dfrac{3\pi }{4} \right) \\
& \Rightarrow {{z}_{1}}=-\sqrt[4]{{{2}^{^{6}}}}\dfrac{1+\iota }{\sqrt{2}} \\
\end{align}$
Similarly we can find,
$\Rightarrow {{z}_{2}}=-\sqrt[4]{{{2}^{6}}}\dfrac{1+\iota }{\sqrt{2}}$ and$\Rightarrow {{z}_{3}}=\sqrt[4]{{{2}^{6}}}\dfrac{1-\iota }{\sqrt{2}}$
Now arranging the factors
$\begin {align}
& \Rightarrow \left (z-{{z} _ {0}} \right)\left (z-{{z} _ {3}} \right)={{z}^{2}}-4z+8 \\
& \Rightarrow \left (z-{{z} _ {1}} \right)\left (z-{{z} _ {2}} \right)={{z}^{2}}+4z+8 \\
\end{align}$
Hence the above are the only to give trinomials with real coefficients. The solution is:
$\Rightarrow {{z}^{4}}+64=\left( {{z}^{2}}-4z+8 \right)\left( {{z}^{2}}+4z+8 \right)$
Note:
We can also find the real factors of the given equation ${{z} ^ {4}} +64$ by grouping coefficients.
Write the above given equation and it's real factors as:
$\begin {align}
& \Rightarrow {{z}^{4}}+64=\left( {{z}^{2}}-az+8 \right)\left( {{z}^{2}}+bz+8 \right) \\
& \Rightarrow {{z}^{4}}+64-\left( {{z}^{2}}-az+8 \right)\left( {{z}^{2}}+bz+8 \right)=0 \\
\end{align}$
On solving the above equations we get two equations
$\begin {align}
& \Rightarrow 16+ab=0 \\
& \Rightarrow a+b=0 \\
\end{align}$
On solving above these we get
$a=4, b=-4$
Hence we get the two real quadratic factors of given equation is
$\Rightarrow {{z}^{4}}+64=\left( {{z}^{2}}-4z+8 \right)\left( {{z}^{2}}+4z+8 \right)$
Now again if we apply the grouping coefficient rule
$\Rightarrow {{z}^{4}}+64-\left( {{z}^{2}}+bz+16 \right)\left( {{z}^{2}}+bz+4 \right)=0$ we get
$\Rightarrow {{z}^{4}}+64=\left( {{z}^{2}}+bz+16 \right)\left( {{z}^{2}}+bz+4 \right)$
On solving the above equation we get these two equations:
$\begin {align}
& \Rightarrow b=0, \\
& \Rightarrow 20+ {{b} ^ {2}} =0 \\
\end{align}$
Therefore, by solving these two we do not get any solution.
Hence ${{z}^{4}}+64$ can be factored into two real quadratic factors $\left( {{z}^{2}}-4z+8 \right)\left( {{z}^{2}}+4z+8 \right)$.
Complete step by step solution:
Now the given question is:
$\Rightarrow {{z} ^ {4}} +64$
The factors of the given equation is
$\Rightarrow {{z}^{4}}+64=\left( z-{{z}_{0}} \right)\left( z-{{z}_{1}} \right)\left( z-{{z}_{2}} \right)\left( z-{{z}_{3}} \right)$
Now puts the above equation equals to zero
$\Rightarrow {{z}^{4}}+64=\left( z-{{z}_{0}} \right)\left( z-{{z}_{1}} \right)\left( z-{{z}_{2}} \right)\left( z-{{z}_{3}} \right)=0$
On solving the above part, we get
$\Rightarrow {{z} ^ {4}} =-64$
Here we can write $64$ in the power of $2$, we get
$\Rightarrow {{z}^{4}}=-64={{2}^{6}}{{e}^{\iota \pi +\iota 2k\pi }}$
Here by using De Moivre's identity we can write
$\Rightarrow {{e} ^ {\iota \pi}}=\cos \pi +\iota \sin \pi =-1$
Now again solving we get
$z=\sqrt[4]{{{2}^{6}}}{{e}^{\iota \left( \dfrac{\pi }{4}+k\dfrac{\pi }{2} \right)}}$
Now we will obtain these for $k=0, 1, 2, 3$
Therefore by using the factors of $z$ we get,
$\Rightarrow {{z}_{0}}=\sqrt[4]{{{2}^{6}}}{{e}^{\iota \dfrac{\pi }{2}}}=\sqrt[4]{{{2}^{6}}}\left( \cos \dfrac{\pi }{4}+\iota \sin \dfrac{\pi }{4} \right)=\sqrt[4]{{{2}^{6}}}\dfrac{1+\iota }{\sqrt{2}}$
$\Rightarrow {{z}_{1}}=\sqrt[4]{{{2}^{6}}}{{e}^{\iota \left( \dfrac{\pi }{4}+\dfrac{\pi }{2} \right)}}$
Now apply the De Moivre`s law, we get
$\begin {align}
& \Rightarrow {{z}_{1}}=\sqrt[4]{{{2}^{6}}}{{e}^{\iota \dfrac{3\pi }{4}}} \\
& \Rightarrow {{z}_{1}}=\sqrt[4]{{{2}^{6}}}\left( \cos \dfrac{3\pi }{4}+\iota \sin \dfrac{3\pi }{4} \right) \\
& \Rightarrow {{z}_{1}}=-\sqrt[4]{{{2}^{^{6}}}}\dfrac{1+\iota }{\sqrt{2}} \\
\end{align}$
Similarly we can find,
$\Rightarrow {{z}_{2}}=-\sqrt[4]{{{2}^{6}}}\dfrac{1+\iota }{\sqrt{2}}$ and$\Rightarrow {{z}_{3}}=\sqrt[4]{{{2}^{6}}}\dfrac{1-\iota }{\sqrt{2}}$
Now arranging the factors
$\begin {align}
& \Rightarrow \left (z-{{z} _ {0}} \right)\left (z-{{z} _ {3}} \right)={{z}^{2}}-4z+8 \\
& \Rightarrow \left (z-{{z} _ {1}} \right)\left (z-{{z} _ {2}} \right)={{z}^{2}}+4z+8 \\
\end{align}$
Hence the above are the only to give trinomials with real coefficients. The solution is:
$\Rightarrow {{z}^{4}}+64=\left( {{z}^{2}}-4z+8 \right)\left( {{z}^{2}}+4z+8 \right)$
Note:
We can also find the real factors of the given equation ${{z} ^ {4}} +64$ by grouping coefficients.
Write the above given equation and it's real factors as:
$\begin {align}
& \Rightarrow {{z}^{4}}+64=\left( {{z}^{2}}-az+8 \right)\left( {{z}^{2}}+bz+8 \right) \\
& \Rightarrow {{z}^{4}}+64-\left( {{z}^{2}}-az+8 \right)\left( {{z}^{2}}+bz+8 \right)=0 \\
\end{align}$
On solving the above equations we get two equations
$\begin {align}
& \Rightarrow 16+ab=0 \\
& \Rightarrow a+b=0 \\
\end{align}$
On solving above these we get
$a=4, b=-4$
Hence we get the two real quadratic factors of given equation is
$\Rightarrow {{z}^{4}}+64=\left( {{z}^{2}}-4z+8 \right)\left( {{z}^{2}}+4z+8 \right)$
Now again if we apply the grouping coefficient rule
$\Rightarrow {{z}^{4}}+64-\left( {{z}^{2}}+bz+16 \right)\left( {{z}^{2}}+bz+4 \right)=0$ we get
$\Rightarrow {{z}^{4}}+64=\left( {{z}^{2}}+bz+16 \right)\left( {{z}^{2}}+bz+4 \right)$
On solving the above equation we get these two equations:
$\begin {align}
& \Rightarrow b=0, \\
& \Rightarrow 20+ {{b} ^ {2}} =0 \\
\end{align}$
Therefore, by solving these two we do not get any solution.
Hence ${{z}^{4}}+64$ can be factored into two real quadratic factors $\left( {{z}^{2}}-4z+8 \right)\left( {{z}^{2}}+4z+8 \right)$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

