
Calculate the wavelength of an electron moving with a velocity of $2.05 \times {10^7}m{s^{ - 1}}$.
Answer
512.4k+ views
Hint: The wavelength of the electron can be calculated using de Broglie’s equation $\lambda = \dfrac{h}{{m\nu }}$. This equation is applicable to any material particle.
Formula used:
$\lambda = \dfrac{h}{{m\nu }}$
Complete step by step answer:
The significance of de Broglie’s equation lies in the fact that it relates the particle characters (e.g. mass) with the wave character (e.g. wavelength) of matter.
According to the de Broglie’s equation,
$\lambda = \dfrac{h}{{m\nu }}$
where, $m = $mass of the particle in $kg$
$\nu = $velocity of the particle in $m{s^{ - 1}}$
$h = $Planck’s constant $ = 6.626 \times {10^{ - 34}}joule\,\sec \,$or $kg{m^2}{s^{ - 1}}$
$\lambda = $de Broglie’s wavelength in metres
It is given that $\nu = $$2.05 \times {10^7}m{s^{ - 1}}$and we know that the mass of an electron $(m) = $$9.1 \times {10^{ - 31}}kg$
Now, substituting the given values in the de Broglie’s equation, we get,
$
\lambda = \dfrac{h}{{m\nu }} \\
\Rightarrow \lambda = \dfrac{{6.626 \times {{10}^{ - 34}}kg{m^2}{s^{ - 1}}}}{{9.1 \times {{10}^{ - 31}}kg\,\,\, \times \,\,2.05 \times {{10}^7}m{s^{ - 1}}\,}} \\
\Rightarrow \lambda = 3.552 \times {10^{ - 11}}m \\
$
Hence, the wavelength of an electron moving with a velocity of $2.05 \times {10^7}m{s^{ - 1}}$is $3.552 \times {10^{ - 11}}m$.
Additional information:
The S.I unit of Planck’s constant $(h)$: is $joule\,\sec \,$or $kg{m^2}{s^{ - 1}}$, where, $1\,Joule = 1kg{m^2}{s^{ - 2}}$.
$
E = h\nu \\
\Rightarrow h = \dfrac{E}{\nu } = \dfrac{J}{{{{\sec }^{ - 1}}}} = J\,\,\sec \\
$
$
Now,\,\,\lambda = \dfrac{h}{{m\nu }}\,\, \\
or,\,h = \lambda m\nu = (m)(kg)(m{s^{ - 1}}) = kg{m^2}{s^{ - 1}} \\
\\
As,\,\,E = h\nu \, \\
\Rightarrow \,Energy = (kg{m^2}{s^{ - 1}})({s^{ - 1}}) = kg{m^2}{s^{ - 2}} \\
so,\,1\,J = 1\,kg{m^2}{s^{ - 2}} \\
$
Note:
The de Broglie’s equation is applicable to any material particle, but it has significance only in the case of microscopic particles.
Formula used:
$\lambda = \dfrac{h}{{m\nu }}$
Complete step by step answer:
The significance of de Broglie’s equation lies in the fact that it relates the particle characters (e.g. mass) with the wave character (e.g. wavelength) of matter.
According to the de Broglie’s equation,
$\lambda = \dfrac{h}{{m\nu }}$
where, $m = $mass of the particle in $kg$
$\nu = $velocity of the particle in $m{s^{ - 1}}$
$h = $Planck’s constant $ = 6.626 \times {10^{ - 34}}joule\,\sec \,$or $kg{m^2}{s^{ - 1}}$
$\lambda = $de Broglie’s wavelength in metres
It is given that $\nu = $$2.05 \times {10^7}m{s^{ - 1}}$and we know that the mass of an electron $(m) = $$9.1 \times {10^{ - 31}}kg$
Now, substituting the given values in the de Broglie’s equation, we get,
$
\lambda = \dfrac{h}{{m\nu }} \\
\Rightarrow \lambda = \dfrac{{6.626 \times {{10}^{ - 34}}kg{m^2}{s^{ - 1}}}}{{9.1 \times {{10}^{ - 31}}kg\,\,\, \times \,\,2.05 \times {{10}^7}m{s^{ - 1}}\,}} \\
\Rightarrow \lambda = 3.552 \times {10^{ - 11}}m \\
$
Hence, the wavelength of an electron moving with a velocity of $2.05 \times {10^7}m{s^{ - 1}}$is $3.552 \times {10^{ - 11}}m$.
Additional information:
The S.I unit of Planck’s constant $(h)$: is $joule\,\sec \,$or $kg{m^2}{s^{ - 1}}$, where, $1\,Joule = 1kg{m^2}{s^{ - 2}}$.
$
E = h\nu \\
\Rightarrow h = \dfrac{E}{\nu } = \dfrac{J}{{{{\sec }^{ - 1}}}} = J\,\,\sec \\
$
$
Now,\,\,\lambda = \dfrac{h}{{m\nu }}\,\, \\
or,\,h = \lambda m\nu = (m)(kg)(m{s^{ - 1}}) = kg{m^2}{s^{ - 1}} \\
\\
As,\,\,E = h\nu \, \\
\Rightarrow \,Energy = (kg{m^2}{s^{ - 1}})({s^{ - 1}}) = kg{m^2}{s^{ - 2}} \\
so,\,1\,J = 1\,kg{m^2}{s^{ - 2}} \\
$
Note:
The de Broglie’s equation is applicable to any material particle, but it has significance only in the case of microscopic particles.
Watch videos on
Calculate the wavelength of an electron moving with a velocity of $2.05 \times {10^7}m{s^{ - 1}}$.

Structure of atom class 11 Chemistry -NCERT EXERCISE 2.20 | Chemistry | Sumandeep Ma'am
Subscribe
likes
2.3K Views
1 year ago
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
