
Calculate the wavelength of an electron moving with a velocity of $2.05 \times {10^7}m{s^{ - 1}}$.
Answer
580.8k+ views
Hint: The wavelength of the electron can be calculated using de Broglie’s equation $\lambda = \dfrac{h}{{m\nu }}$. This equation is applicable to any material particle.
Formula used:
$\lambda = \dfrac{h}{{m\nu }}$
Complete step by step answer:
The significance of de Broglie’s equation lies in the fact that it relates the particle characters (e.g. mass) with the wave character (e.g. wavelength) of matter.
According to the de Broglie’s equation,
$\lambda = \dfrac{h}{{m\nu }}$
where, $m = $mass of the particle in $kg$
$\nu = $velocity of the particle in $m{s^{ - 1}}$
$h = $Planck’s constant $ = 6.626 \times {10^{ - 34}}joule\,\sec \,$or $kg{m^2}{s^{ - 1}}$
$\lambda = $de Broglie’s wavelength in metres
It is given that $\nu = $$2.05 \times {10^7}m{s^{ - 1}}$and we know that the mass of an electron $(m) = $$9.1 \times {10^{ - 31}}kg$
Now, substituting the given values in the de Broglie’s equation, we get,
$
\lambda = \dfrac{h}{{m\nu }} \\
\Rightarrow \lambda = \dfrac{{6.626 \times {{10}^{ - 34}}kg{m^2}{s^{ - 1}}}}{{9.1 \times {{10}^{ - 31}}kg\,\,\, \times \,\,2.05 \times {{10}^7}m{s^{ - 1}}\,}} \\
\Rightarrow \lambda = 3.552 \times {10^{ - 11}}m \\
$
Hence, the wavelength of an electron moving with a velocity of $2.05 \times {10^7}m{s^{ - 1}}$is $3.552 \times {10^{ - 11}}m$.
Additional information:
The S.I unit of Planck’s constant $(h)$: is $joule\,\sec \,$or $kg{m^2}{s^{ - 1}}$, where, $1\,Joule = 1kg{m^2}{s^{ - 2}}$.
$
E = h\nu \\
\Rightarrow h = \dfrac{E}{\nu } = \dfrac{J}{{{{\sec }^{ - 1}}}} = J\,\,\sec \\
$
$
Now,\,\,\lambda = \dfrac{h}{{m\nu }}\,\, \\
or,\,h = \lambda m\nu = (m)(kg)(m{s^{ - 1}}) = kg{m^2}{s^{ - 1}} \\
\\
As,\,\,E = h\nu \, \\
\Rightarrow \,Energy = (kg{m^2}{s^{ - 1}})({s^{ - 1}}) = kg{m^2}{s^{ - 2}} \\
so,\,1\,J = 1\,kg{m^2}{s^{ - 2}} \\
$
Note:
The de Broglie’s equation is applicable to any material particle, but it has significance only in the case of microscopic particles.
Formula used:
$\lambda = \dfrac{h}{{m\nu }}$
Complete step by step answer:
The significance of de Broglie’s equation lies in the fact that it relates the particle characters (e.g. mass) with the wave character (e.g. wavelength) of matter.
According to the de Broglie’s equation,
$\lambda = \dfrac{h}{{m\nu }}$
where, $m = $mass of the particle in $kg$
$\nu = $velocity of the particle in $m{s^{ - 1}}$
$h = $Planck’s constant $ = 6.626 \times {10^{ - 34}}joule\,\sec \,$or $kg{m^2}{s^{ - 1}}$
$\lambda = $de Broglie’s wavelength in metres
It is given that $\nu = $$2.05 \times {10^7}m{s^{ - 1}}$and we know that the mass of an electron $(m) = $$9.1 \times {10^{ - 31}}kg$
Now, substituting the given values in the de Broglie’s equation, we get,
$
\lambda = \dfrac{h}{{m\nu }} \\
\Rightarrow \lambda = \dfrac{{6.626 \times {{10}^{ - 34}}kg{m^2}{s^{ - 1}}}}{{9.1 \times {{10}^{ - 31}}kg\,\,\, \times \,\,2.05 \times {{10}^7}m{s^{ - 1}}\,}} \\
\Rightarrow \lambda = 3.552 \times {10^{ - 11}}m \\
$
Hence, the wavelength of an electron moving with a velocity of $2.05 \times {10^7}m{s^{ - 1}}$is $3.552 \times {10^{ - 11}}m$.
Additional information:
The S.I unit of Planck’s constant $(h)$: is $joule\,\sec \,$or $kg{m^2}{s^{ - 1}}$, where, $1\,Joule = 1kg{m^2}{s^{ - 2}}$.
$
E = h\nu \\
\Rightarrow h = \dfrac{E}{\nu } = \dfrac{J}{{{{\sec }^{ - 1}}}} = J\,\,\sec \\
$
$
Now,\,\,\lambda = \dfrac{h}{{m\nu }}\,\, \\
or,\,h = \lambda m\nu = (m)(kg)(m{s^{ - 1}}) = kg{m^2}{s^{ - 1}} \\
\\
As,\,\,E = h\nu \, \\
\Rightarrow \,Energy = (kg{m^2}{s^{ - 1}})({s^{ - 1}}) = kg{m^2}{s^{ - 2}} \\
so,\,1\,J = 1\,kg{m^2}{s^{ - 2}} \\
$
Note:
The de Broglie’s equation is applicable to any material particle, but it has significance only in the case of microscopic particles.
Watch videos on
Calculate the wavelength of an electron moving with a velocity of $2.05 \times {10^7}m{s^{ - 1}}$.

Structure of atom class 11 Chemistry -NCERT EXERCISE 2.20 | Chemistry | Sumandeep Ma'am
Subscribe
likes
6.5K Views
2 years ago
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

