
Calculate the wavelength of an electron moving with a velocity of $2.05 \times {10^7}m{s^{ - 1}}$.
Answer
584.1k+ views
Hint: The wavelength of the electron can be calculated using de Broglie’s equation $\lambda = \dfrac{h}{{m\nu }}$. This equation is applicable to any material particle.
Formula used:
$\lambda = \dfrac{h}{{m\nu }}$
Complete step by step answer:
The significance of de Broglie’s equation lies in the fact that it relates the particle characters (e.g. mass) with the wave character (e.g. wavelength) of matter.
According to the de Broglie’s equation,
$\lambda = \dfrac{h}{{m\nu }}$
where, $m = $mass of the particle in $kg$
$\nu = $velocity of the particle in $m{s^{ - 1}}$
$h = $Planck’s constant $ = 6.626 \times {10^{ - 34}}joule\,\sec \,$or $kg{m^2}{s^{ - 1}}$
$\lambda = $de Broglie’s wavelength in metres
It is given that $\nu = $$2.05 \times {10^7}m{s^{ - 1}}$and we know that the mass of an electron $(m) = $$9.1 \times {10^{ - 31}}kg$
Now, substituting the given values in the de Broglie’s equation, we get,
$
\lambda = \dfrac{h}{{m\nu }} \\
\Rightarrow \lambda = \dfrac{{6.626 \times {{10}^{ - 34}}kg{m^2}{s^{ - 1}}}}{{9.1 \times {{10}^{ - 31}}kg\,\,\, \times \,\,2.05 \times {{10}^7}m{s^{ - 1}}\,}} \\
\Rightarrow \lambda = 3.552 \times {10^{ - 11}}m \\
$
Hence, the wavelength of an electron moving with a velocity of $2.05 \times {10^7}m{s^{ - 1}}$is $3.552 \times {10^{ - 11}}m$.
Additional information:
The S.I unit of Planck’s constant $(h)$: is $joule\,\sec \,$or $kg{m^2}{s^{ - 1}}$, where, $1\,Joule = 1kg{m^2}{s^{ - 2}}$.
$
E = h\nu \\
\Rightarrow h = \dfrac{E}{\nu } = \dfrac{J}{{{{\sec }^{ - 1}}}} = J\,\,\sec \\
$
$
Now,\,\,\lambda = \dfrac{h}{{m\nu }}\,\, \\
or,\,h = \lambda m\nu = (m)(kg)(m{s^{ - 1}}) = kg{m^2}{s^{ - 1}} \\
\\
As,\,\,E = h\nu \, \\
\Rightarrow \,Energy = (kg{m^2}{s^{ - 1}})({s^{ - 1}}) = kg{m^2}{s^{ - 2}} \\
so,\,1\,J = 1\,kg{m^2}{s^{ - 2}} \\
$
Note:
The de Broglie’s equation is applicable to any material particle, but it has significance only in the case of microscopic particles.
Formula used:
$\lambda = \dfrac{h}{{m\nu }}$
Complete step by step answer:
The significance of de Broglie’s equation lies in the fact that it relates the particle characters (e.g. mass) with the wave character (e.g. wavelength) of matter.
According to the de Broglie’s equation,
$\lambda = \dfrac{h}{{m\nu }}$
where, $m = $mass of the particle in $kg$
$\nu = $velocity of the particle in $m{s^{ - 1}}$
$h = $Planck’s constant $ = 6.626 \times {10^{ - 34}}joule\,\sec \,$or $kg{m^2}{s^{ - 1}}$
$\lambda = $de Broglie’s wavelength in metres
It is given that $\nu = $$2.05 \times {10^7}m{s^{ - 1}}$and we know that the mass of an electron $(m) = $$9.1 \times {10^{ - 31}}kg$
Now, substituting the given values in the de Broglie’s equation, we get,
$
\lambda = \dfrac{h}{{m\nu }} \\
\Rightarrow \lambda = \dfrac{{6.626 \times {{10}^{ - 34}}kg{m^2}{s^{ - 1}}}}{{9.1 \times {{10}^{ - 31}}kg\,\,\, \times \,\,2.05 \times {{10}^7}m{s^{ - 1}}\,}} \\
\Rightarrow \lambda = 3.552 \times {10^{ - 11}}m \\
$
Hence, the wavelength of an electron moving with a velocity of $2.05 \times {10^7}m{s^{ - 1}}$is $3.552 \times {10^{ - 11}}m$.
Additional information:
The S.I unit of Planck’s constant $(h)$: is $joule\,\sec \,$or $kg{m^2}{s^{ - 1}}$, where, $1\,Joule = 1kg{m^2}{s^{ - 2}}$.
$
E = h\nu \\
\Rightarrow h = \dfrac{E}{\nu } = \dfrac{J}{{{{\sec }^{ - 1}}}} = J\,\,\sec \\
$
$
Now,\,\,\lambda = \dfrac{h}{{m\nu }}\,\, \\
or,\,h = \lambda m\nu = (m)(kg)(m{s^{ - 1}}) = kg{m^2}{s^{ - 1}} \\
\\
As,\,\,E = h\nu \, \\
\Rightarrow \,Energy = (kg{m^2}{s^{ - 1}})({s^{ - 1}}) = kg{m^2}{s^{ - 2}} \\
so,\,1\,J = 1\,kg{m^2}{s^{ - 2}} \\
$
Note:
The de Broglie’s equation is applicable to any material particle, but it has significance only in the case of microscopic particles.
Watch videos on
Calculate the wavelength of an electron moving with a velocity of $2.05 \times {10^7}m{s^{ - 1}}$.

Structure of atom class 11 Chemistry -NCERT EXERCISE 2.20 | Chemistry | Sumandeep Ma'am
Subscribe
likes
6.5K Views
2 years ago
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

Name the metals and nonmetals in the first twenty class 11 chemistry CBSE

Which one of the following is not a method of soil class 11 biology CBSE

