
Calculate the wavelength of an electron moving with a velocity of $2.05 \times {10^7}m{s^{ - 1}}$.
Answer
592.2k+ views
Hint: The wavelength of the electron can be calculated using de Broglie’s equation $\lambda = \dfrac{h}{{m\nu }}$. This equation is applicable to any material particle.
Formula used:
$\lambda = \dfrac{h}{{m\nu }}$
Complete step by step answer:
The significance of de Broglie’s equation lies in the fact that it relates the particle characters (e.g. mass) with the wave character (e.g. wavelength) of matter.
According to the de Broglie’s equation,
$\lambda = \dfrac{h}{{m\nu }}$
where, $m = $mass of the particle in $kg$
$\nu = $velocity of the particle in $m{s^{ - 1}}$
$h = $Planck’s constant $ = 6.626 \times {10^{ - 34}}joule\,\sec \,$or $kg{m^2}{s^{ - 1}}$
$\lambda = $de Broglie’s wavelength in metres
It is given that $\nu = $$2.05 \times {10^7}m{s^{ - 1}}$and we know that the mass of an electron $(m) = $$9.1 \times {10^{ - 31}}kg$
Now, substituting the given values in the de Broglie’s equation, we get,
$
\lambda = \dfrac{h}{{m\nu }} \\
\Rightarrow \lambda = \dfrac{{6.626 \times {{10}^{ - 34}}kg{m^2}{s^{ - 1}}}}{{9.1 \times {{10}^{ - 31}}kg\,\,\, \times \,\,2.05 \times {{10}^7}m{s^{ - 1}}\,}} \\
\Rightarrow \lambda = 3.552 \times {10^{ - 11}}m \\
$
Hence, the wavelength of an electron moving with a velocity of $2.05 \times {10^7}m{s^{ - 1}}$is $3.552 \times {10^{ - 11}}m$.
Additional information:
The S.I unit of Planck’s constant $(h)$: is $joule\,\sec \,$or $kg{m^2}{s^{ - 1}}$, where, $1\,Joule = 1kg{m^2}{s^{ - 2}}$.
$
E = h\nu \\
\Rightarrow h = \dfrac{E}{\nu } = \dfrac{J}{{{{\sec }^{ - 1}}}} = J\,\,\sec \\
$
$
Now,\,\,\lambda = \dfrac{h}{{m\nu }}\,\, \\
or,\,h = \lambda m\nu = (m)(kg)(m{s^{ - 1}}) = kg{m^2}{s^{ - 1}} \\
\\
As,\,\,E = h\nu \, \\
\Rightarrow \,Energy = (kg{m^2}{s^{ - 1}})({s^{ - 1}}) = kg{m^2}{s^{ - 2}} \\
so,\,1\,J = 1\,kg{m^2}{s^{ - 2}} \\
$
Note:
The de Broglie’s equation is applicable to any material particle, but it has significance only in the case of microscopic particles.
Formula used:
$\lambda = \dfrac{h}{{m\nu }}$
Complete step by step answer:
The significance of de Broglie’s equation lies in the fact that it relates the particle characters (e.g. mass) with the wave character (e.g. wavelength) of matter.
According to the de Broglie’s equation,
$\lambda = \dfrac{h}{{m\nu }}$
where, $m = $mass of the particle in $kg$
$\nu = $velocity of the particle in $m{s^{ - 1}}$
$h = $Planck’s constant $ = 6.626 \times {10^{ - 34}}joule\,\sec \,$or $kg{m^2}{s^{ - 1}}$
$\lambda = $de Broglie’s wavelength in metres
It is given that $\nu = $$2.05 \times {10^7}m{s^{ - 1}}$and we know that the mass of an electron $(m) = $$9.1 \times {10^{ - 31}}kg$
Now, substituting the given values in the de Broglie’s equation, we get,
$
\lambda = \dfrac{h}{{m\nu }} \\
\Rightarrow \lambda = \dfrac{{6.626 \times {{10}^{ - 34}}kg{m^2}{s^{ - 1}}}}{{9.1 \times {{10}^{ - 31}}kg\,\,\, \times \,\,2.05 \times {{10}^7}m{s^{ - 1}}\,}} \\
\Rightarrow \lambda = 3.552 \times {10^{ - 11}}m \\
$
Hence, the wavelength of an electron moving with a velocity of $2.05 \times {10^7}m{s^{ - 1}}$is $3.552 \times {10^{ - 11}}m$.
Additional information:
The S.I unit of Planck’s constant $(h)$: is $joule\,\sec \,$or $kg{m^2}{s^{ - 1}}$, where, $1\,Joule = 1kg{m^2}{s^{ - 2}}$.
$
E = h\nu \\
\Rightarrow h = \dfrac{E}{\nu } = \dfrac{J}{{{{\sec }^{ - 1}}}} = J\,\,\sec \\
$
$
Now,\,\,\lambda = \dfrac{h}{{m\nu }}\,\, \\
or,\,h = \lambda m\nu = (m)(kg)(m{s^{ - 1}}) = kg{m^2}{s^{ - 1}} \\
\\
As,\,\,E = h\nu \, \\
\Rightarrow \,Energy = (kg{m^2}{s^{ - 1}})({s^{ - 1}}) = kg{m^2}{s^{ - 2}} \\
so,\,1\,J = 1\,kg{m^2}{s^{ - 2}} \\
$
Note:
The de Broglie’s equation is applicable to any material particle, but it has significance only in the case of microscopic particles.
Watch videos on
Calculate the wavelength of an electron moving with a velocity of $2.05 \times {10^7}m{s^{ - 1}}$.

Structure of atom class 11 Chemistry -NCERT EXERCISE 2.20 | Chemistry | Sumandeep Ma'am
Subscribe
likes
6.6K Views
2 years ago
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

