
Calculate the value of following:
\[\operatorname{arccot} [\tan ( - 37^\circ )]\].
Answer
615.3k+ views
Hint: Recall the range of inverse cotangent functions, which is \[(0,\pi )\]. Convert the angle in tangent to the interval \[(0,\pi )\] in terms of cotangent and then solve it to get the final answer.
Complete step-by-step answer:
Inverse trigonometric functions are also referred to as arcus functions or anti-trigonometric functions.
They are inverse functions of the trigonometric functions that have domains that are duly constrained.
Further, they are particularly inverse functions of sine, cosine, tangent, cotangent, secant, and cosecant functions. They are used to attain an angle from any of the angle’s trigonometric ratios.
The inverse cotangent function has a range of values in the interval \[(0,\pi )\]. Hence, the final angle should be expressed in this interval.
To convert a tangent function into a cotangent function, we use the following identity.
\[\tan x = \cot (90^\circ - x)\]
We can use this identity to convert tan 37° in terms of cotangent. Hence, we have as follows:
\[\operatorname{arccot} [\tan ( - 37^\circ )] = \operatorname{arccot} [\cot (90^\circ - ( - 37^\circ ))]\]
We simplify the above expression to get as follows:
\[\operatorname{arccot} [\tan ( - 37^\circ )] = \operatorname{arccot} [\cot (90^\circ + 37^\circ )]\]
\[\operatorname{arccot} [\tan ( - 37^\circ )] = \operatorname{arccot} [\cot (127^\circ )]\]
Now, for any function, if we take the inverse of that function, we get an identity function such that the result lies in the range of the inverse function.
\[{f^{ - 1}}(f(x)) = x\]
Inverse trigonometric functions also behave similarly.
The angle 127° lies in the range of inverse cotangent function, hence, we have:
\[\operatorname{arccot} [\tan ( - 37^\circ )] = 127^\circ \]
Hence, the value of \[\operatorname{arccot} [\tan ( - 37^\circ )]\] is 127°.
Note: You can also use the relation between inverse cotangent and inverse tangent function, that is, \[\operatorname{arccot} x = \dfrac{\pi }{2} - \arctan x\]. The range of the inverse tangent function is \[\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)\] and then you can proceed.
Complete step-by-step answer:
Inverse trigonometric functions are also referred to as arcus functions or anti-trigonometric functions.
They are inverse functions of the trigonometric functions that have domains that are duly constrained.
Further, they are particularly inverse functions of sine, cosine, tangent, cotangent, secant, and cosecant functions. They are used to attain an angle from any of the angle’s trigonometric ratios.
The inverse cotangent function has a range of values in the interval \[(0,\pi )\]. Hence, the final angle should be expressed in this interval.
To convert a tangent function into a cotangent function, we use the following identity.
\[\tan x = \cot (90^\circ - x)\]
We can use this identity to convert tan 37° in terms of cotangent. Hence, we have as follows:
\[\operatorname{arccot} [\tan ( - 37^\circ )] = \operatorname{arccot} [\cot (90^\circ - ( - 37^\circ ))]\]
We simplify the above expression to get as follows:
\[\operatorname{arccot} [\tan ( - 37^\circ )] = \operatorname{arccot} [\cot (90^\circ + 37^\circ )]\]
\[\operatorname{arccot} [\tan ( - 37^\circ )] = \operatorname{arccot} [\cot (127^\circ )]\]
Now, for any function, if we take the inverse of that function, we get an identity function such that the result lies in the range of the inverse function.
\[{f^{ - 1}}(f(x)) = x\]
Inverse trigonometric functions also behave similarly.
The angle 127° lies in the range of inverse cotangent function, hence, we have:
\[\operatorname{arccot} [\tan ( - 37^\circ )] = 127^\circ \]
Hence, the value of \[\operatorname{arccot} [\tan ( - 37^\circ )]\] is 127°.
Note: You can also use the relation between inverse cotangent and inverse tangent function, that is, \[\operatorname{arccot} x = \dfrac{\pi }{2} - \arctan x\]. The range of the inverse tangent function is \[\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)\] and then you can proceed.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Why cannot DNA pass through cell membranes class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

In a human foetus the limbs and digits develop after class 12 biology CBSE

AABbCc genotype forms how many types of gametes a 4 class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

