
Calculate the value of $\arctan \left( 1 \right)+\arccos \left( \dfrac{-1}{2} \right)+\arcsin \left( \dfrac{-1}{2} \right)$.
Answer
512.1k+ views
Hint: To solve this problem, we should know the meaning of $\arcsin ,\text{ }\arccos ,\text{ arctan}$and the range of each function. The ranges of $\arcsin ,\text{ }\arccos ,\text{ arctan}$ are $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\text{ , }\left[ 0,\pi \right]\text{ , }\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$ respectively. The equation $\arcsin x=\theta $ means, in the given range of $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$, the value of $\theta $ for which $\sin \theta =x$. The above definition is the same for $\arccos ,\text{ arctan}$ also. Using this concept, we can calculate the values of the terms in the required expression, we get the values of the three angles and the sum of them, will give the required answer.
Complete step-by-step solution:
The equation $\arcsin x=\theta $ means, in the given range of $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$, the value of $\theta $ for which $\sin \theta =x$.
The equation $\arccos x=\theta $ means, in the given range of \[\left[ 0,\pi \right]\], the value of $\theta $ for which $\cos \theta =x$.
The equation $\arctan x=\theta $ means, in the given range of $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$, the value of $\theta $ for which $\tan \theta =x$.
Let us consider $\arctan 1$. We can infer that for the value of $\dfrac{\pi }{4}$, the value of $\tan \dfrac{\pi }{4}=1$ is valid and $\dfrac{\pi }{4}$ is in the range of $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$. So, we can write that
$\arctan 1=\dfrac{\pi }{4}$
Let us consider $\arcsin \left( \dfrac{-1}{2} \right)$. We can infer that for the value of $-\dfrac{\pi }{6}$, the value of $\sin \left( -\dfrac{\pi }{6} \right)=\dfrac{-1}{2}$ is valid and $-\dfrac{\pi }{6}$ is in the range of $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$. So, we can write that
$\arcsin \left( \dfrac{-1}{2} \right)=-\dfrac{\pi }{6}$
Let us consider $\arccos \left( \dfrac{-1}{2} \right)$. We can infer that for the value of $\dfrac{2\pi }{3}$, the value of $\cos \left( \dfrac{2\pi }{3} \right)=\dfrac{-1}{2}$ is valid and $\dfrac{2\pi }{3}$ is in the range of \[\left[ 0,\pi \right]\]. So, we can write that
$\arccos \left( \dfrac{-1}{2} \right)=\dfrac{2\pi }{3}$
Using the above values in the expression $\arctan \left( 1 \right)+\arccos \left( \dfrac{-1}{2} \right)+\arcsin \left( \dfrac{-1}{2} \right)$, we get
$\arctan \left( 1 \right)+\arccos \left( \dfrac{-1}{2} \right)+\arcsin \left( \dfrac{-1}{2} \right)=\dfrac{\pi }{4}+\dfrac{2\pi }{3}-\dfrac{\pi }{6}=\dfrac{\pi }{4}+\dfrac{4\pi -\pi }{6}=\dfrac{\pi }{4}+\dfrac{\pi }{2}=\dfrac{3\pi }{4}$
$\therefore $ The required value of the expression in the expression is $\dfrac{3\pi }{4}={{135}^{\circ }}$.
Note: An alternate way to do this problem is by using a property in inverse trigonometry. We can write it as $\arcsin x+\arccos x=\dfrac{\pi }{2}\text{ }\forall \text{x}\in \left[ -1,1 \right]$. Using this relation when $x=\dfrac{-1}{2}$, we get $\arcsin \left( \dfrac{-1}{2} \right)+\arccos \left( \dfrac{-1}{2} \right)=\dfrac{\pi }{2}$. Using this relation, we can directly rewrite the expression in the question as $\arctan 1+\dfrac{\pi }{2}$.
Complete step-by-step solution:
The equation $\arcsin x=\theta $ means, in the given range of $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$, the value of $\theta $ for which $\sin \theta =x$.
The equation $\arccos x=\theta $ means, in the given range of \[\left[ 0,\pi \right]\], the value of $\theta $ for which $\cos \theta =x$.
The equation $\arctan x=\theta $ means, in the given range of $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$, the value of $\theta $ for which $\tan \theta =x$.
Let us consider $\arctan 1$. We can infer that for the value of $\dfrac{\pi }{4}$, the value of $\tan \dfrac{\pi }{4}=1$ is valid and $\dfrac{\pi }{4}$ is in the range of $\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)$. So, we can write that
$\arctan 1=\dfrac{\pi }{4}$
Let us consider $\arcsin \left( \dfrac{-1}{2} \right)$. We can infer that for the value of $-\dfrac{\pi }{6}$, the value of $\sin \left( -\dfrac{\pi }{6} \right)=\dfrac{-1}{2}$ is valid and $-\dfrac{\pi }{6}$ is in the range of $\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]$. So, we can write that
$\arcsin \left( \dfrac{-1}{2} \right)=-\dfrac{\pi }{6}$
Let us consider $\arccos \left( \dfrac{-1}{2} \right)$. We can infer that for the value of $\dfrac{2\pi }{3}$, the value of $\cos \left( \dfrac{2\pi }{3} \right)=\dfrac{-1}{2}$ is valid and $\dfrac{2\pi }{3}$ is in the range of \[\left[ 0,\pi \right]\]. So, we can write that
$\arccos \left( \dfrac{-1}{2} \right)=\dfrac{2\pi }{3}$
Using the above values in the expression $\arctan \left( 1 \right)+\arccos \left( \dfrac{-1}{2} \right)+\arcsin \left( \dfrac{-1}{2} \right)$, we get
$\arctan \left( 1 \right)+\arccos \left( \dfrac{-1}{2} \right)+\arcsin \left( \dfrac{-1}{2} \right)=\dfrac{\pi }{4}+\dfrac{2\pi }{3}-\dfrac{\pi }{6}=\dfrac{\pi }{4}+\dfrac{4\pi -\pi }{6}=\dfrac{\pi }{4}+\dfrac{\pi }{2}=\dfrac{3\pi }{4}$
$\therefore $ The required value of the expression in the expression is $\dfrac{3\pi }{4}={{135}^{\circ }}$.
Note: An alternate way to do this problem is by using a property in inverse trigonometry. We can write it as $\arcsin x+\arccos x=\dfrac{\pi }{2}\text{ }\forall \text{x}\in \left[ -1,1 \right]$. Using this relation when $x=\dfrac{-1}{2}$, we get $\arcsin \left( \dfrac{-1}{2} \right)+\arccos \left( \dfrac{-1}{2} \right)=\dfrac{\pi }{2}$. Using this relation, we can directly rewrite the expression in the question as $\arctan 1+\dfrac{\pi }{2}$.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

An orchid growing as an epiphyte on a mango tree is class 12 biology CBSE

Briefly mention the contribution of TH Morgan in g class 12 biology CBSE
