
Calculate the standard cell potentials of galvanic cell in which the following reactions take place:
(i) $2Cr(s)+3C{{d}^{2+}}(aq)\to 2C{{r}^{3+}}(aq)+3Cd$
(ii) $F{{e}^{2+}}(aq)+A{{g}^{+}}(aq)\to F{{e}^{3+}}(aq)+Ag(s)$
Calculate the ${{\Delta }_{r}}{{G}^{\Theta }}$ and equilibrium constant of the reactions
Answer
568.8k+ views
Hint: The standard cell potential, ${{\Delta }_{r}}{{G}^{\Theta }}$and equilibrium constant of the reactions can be calculated using standard electrode potentials of the elements involved. The electrode potential cannot be obtained empirically. It is calculated using a reference hydrogen electrode.
Complete step by step solution:
Standard electrode potential $(E{}^\circ )$ is defined as the measures the individual potential of reversible electrode at standard state with ions at an effective concentration of 1mol $d{{m}^{-3}}~$at the pressure of 1 atm.
(i) $2Cr(s)+3C{{d}^{2+}}(aq)\to 2C{{r}^{3+}}(aq)+3Cd$
The formula of calculating cell potential is :
\[{{E}^{{}^\circ }}_{cell}={{E}^{{}^\circ }}_{cathode}-{{E}^{{}^\circ }}_{anode}\]
In the equation, cathode is cadmium with electrode potential , -0.40V, anode is chromium with electrode potential, -0.74V. Therefore, substituting the value in the above formula,
\[\begin{align}
& {{E}^{{}^\circ }}_{cell}=-0.40-(-0.74) \\
& {{E}^{{}^\circ }}_{cell}=0.34V \\
\end{align}\]
In a galvanic cell, where a spontaneous redox reaction drives the cell to produce an electric potential, Gibbs free energy ${{\Delta }_{r}}{{G}^{\Theta }}$ must be negative, in accordance with the following equation:
\[\Delta G{{{}^\circ }_{cell}}~=\text{ }-nFE{{{}^\circ }_{cell}}\]
Since we know the electrode potential, and number electrons involved in the reaction is 6 and value of faraday constant is 96500, Therefore, substituting the value in the above formula,
\[\begin{align}
& \Delta G{{{}^\circ }_{cell}}~=\text{ }-6\times 96500\times 0.34 \\
& \Delta G{{{}^\circ }_{cell}}~=-196860J/mol=-196.86kJ/mol \\
\end{align}\]
The formula for equilibrium constant is,
\[\log {{K}_{c}}=\dfrac{n{{E}_{cell}}^{o}}{0.059}=\dfrac{6\times 0.34}{0.059}=34.576\]
\[{{K}_{c}}=3.76\times {{10}^{34}}\]
Equilibrium constant is \[3.76\times {{10}^{34}}\].
(ii) $F{{e}^{2+}}(aq)+A{{g}^{+}}(aq)\to F{{e}^{3+}}(aq)+Ag(s)$
In the equation, cathode is silver with electrode potential , 0.80V, anode is iron with electrode potential, 0.77V. Therefore, substituting the value in the above formula,
\[\begin{align}
& {{E}^{{}^\circ }}_{cell}=0.80-(0.77) \\
& {{E}^{{}^\circ }}_{cell}=0.03V \\
\end{align}\]
Now Gibbs free energy will be:
\[\begin{align}
& \Delta G{{{}^\circ }_{cell}}~=\text{ }-1\times 96500\times 0.03 \\
& \Delta G{{{}^\circ }_{cell}}~=-2895J/mol=-2.895kJ/mol \\
\end{align}\]
The equilibrium constant is,
\[\log {{K}_{c}}=\dfrac{n{{E}_{cell}}^{o}}{0.059}=\dfrac{1\times 0.03}{0.059}=0.508\]
\[{{K}_{c}}=3.22\]
Note: The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change.
Complete step by step solution:
Standard electrode potential $(E{}^\circ )$ is defined as the measures the individual potential of reversible electrode at standard state with ions at an effective concentration of 1mol $d{{m}^{-3}}~$at the pressure of 1 atm.
(i) $2Cr(s)+3C{{d}^{2+}}(aq)\to 2C{{r}^{3+}}(aq)+3Cd$
The formula of calculating cell potential is :
\[{{E}^{{}^\circ }}_{cell}={{E}^{{}^\circ }}_{cathode}-{{E}^{{}^\circ }}_{anode}\]
In the equation, cathode is cadmium with electrode potential , -0.40V, anode is chromium with electrode potential, -0.74V. Therefore, substituting the value in the above formula,
\[\begin{align}
& {{E}^{{}^\circ }}_{cell}=-0.40-(-0.74) \\
& {{E}^{{}^\circ }}_{cell}=0.34V \\
\end{align}\]
In a galvanic cell, where a spontaneous redox reaction drives the cell to produce an electric potential, Gibbs free energy ${{\Delta }_{r}}{{G}^{\Theta }}$ must be negative, in accordance with the following equation:
\[\Delta G{{{}^\circ }_{cell}}~=\text{ }-nFE{{{}^\circ }_{cell}}\]
Since we know the electrode potential, and number electrons involved in the reaction is 6 and value of faraday constant is 96500, Therefore, substituting the value in the above formula,
\[\begin{align}
& \Delta G{{{}^\circ }_{cell}}~=\text{ }-6\times 96500\times 0.34 \\
& \Delta G{{{}^\circ }_{cell}}~=-196860J/mol=-196.86kJ/mol \\
\end{align}\]
The formula for equilibrium constant is,
\[\log {{K}_{c}}=\dfrac{n{{E}_{cell}}^{o}}{0.059}=\dfrac{6\times 0.34}{0.059}=34.576\]
\[{{K}_{c}}=3.76\times {{10}^{34}}\]
Equilibrium constant is \[3.76\times {{10}^{34}}\].
(ii) $F{{e}^{2+}}(aq)+A{{g}^{+}}(aq)\to F{{e}^{3+}}(aq)+Ag(s)$
In the equation, cathode is silver with electrode potential , 0.80V, anode is iron with electrode potential, 0.77V. Therefore, substituting the value in the above formula,
\[\begin{align}
& {{E}^{{}^\circ }}_{cell}=0.80-(0.77) \\
& {{E}^{{}^\circ }}_{cell}=0.03V \\
\end{align}\]
Now Gibbs free energy will be:
\[\begin{align}
& \Delta G{{{}^\circ }_{cell}}~=\text{ }-1\times 96500\times 0.03 \\
& \Delta G{{{}^\circ }_{cell}}~=-2895J/mol=-2.895kJ/mol \\
\end{align}\]
The equilibrium constant is,
\[\log {{K}_{c}}=\dfrac{n{{E}_{cell}}^{o}}{0.059}=\dfrac{1\times 0.03}{0.059}=0.508\]
\[{{K}_{c}}=3.22\]
Note: The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

