Answer
Verified
429.9k+ views
Hint:-
- Type of lens present in the eye is a convex lens.
- Power of eye is the inverse of focal length.
- A convex lens image is formed at focus if the object is at far, infinity.
- Recall the lens equation \[\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}\]
Complete step by step solution:-
Here, in the eye lens is a convex lens.
(a) Far point, infinity,
If the object is at infinity the image is obtained at retina.
So the distance between the eye lens and retina is the focal length.
It is already given,
So focal length \[f = 2.5cm = 0.025m\]
Power is ,
\[\begin{gathered}
P = \dfrac{1}{f} \\
P = \dfrac{1}{{0.025}} = 40D \\
\end{gathered} \]
(b) Near point, \[25cm\] from the eye.
This case is different from the initial problem, the object is at \[25cm\], here light is coming from object to lens.
But measurements are always from the lens. So according to sign conversion the distance of the object from the lens (\[u\]) is negative.
\[\begin{gathered}
P = \dfrac{1}{f} = 0.44c{m^{ - 1}} = 44{m^{ - 1}} = 44D \\
1D = 1{m^{ - 1}} \\
\end{gathered} \]
Image is obtained at retina, the measurement from the lens to retina is the same direction of the light ray. So \[v\] is positive. Distance between the retina and lens is already given,
\[v = 2.5cm\]
From the lens equation,
\[\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u} = (\dfrac{1}{{2.5}}) - (\dfrac{1}{{ - 25}}) = \dfrac{1}{{2.5}} + \dfrac{1}{{25}}\]
\[\dfrac{1}{f} = \dfrac{{25 + 2.5}}{{25 \times 2.5}} = \dfrac{{27.5}}{{62.5}} = 0.44c{m^{ - 1}}\]
Power \[P = \dfrac{1}{f} = 0.44c{m^{ - 1}} = 44{m^{ - 1}} = 44D\]
So the answer is
(a) Far point, infinity,
Power \[P = 40D\]
(b) Near point, \[25cm\] from the eye.
Power \[P = 44D\]
Note:-
- We can use the conversion\[1cm = {10^{ - 2}}m = 0.01m\].
- We can recall the conversion\[1c{m^{ - 1}} = {10^2}{m^{ - 1}} = 100{m^{ - 1}}\].
- The unit for power of lens is Diopter (\[D\])
\[1D = 1{m^{ - 1}}\]
- A change in shape of the eye can alter the focal length of the eye.
- Sign convention always considers these types of problems.
- Type of lens present in the eye is a convex lens.
- Power of eye is the inverse of focal length.
- A convex lens image is formed at focus if the object is at far, infinity.
- Recall the lens equation \[\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}\]
Complete step by step solution:-
Here, in the eye lens is a convex lens.
(a) Far point, infinity,
If the object is at infinity the image is obtained at retina.
So the distance between the eye lens and retina is the focal length.
It is already given,
So focal length \[f = 2.5cm = 0.025m\]
Power is ,
\[\begin{gathered}
P = \dfrac{1}{f} \\
P = \dfrac{1}{{0.025}} = 40D \\
\end{gathered} \]
(b) Near point, \[25cm\] from the eye.
This case is different from the initial problem, the object is at \[25cm\], here light is coming from object to lens.
But measurements are always from the lens. So according to sign conversion the distance of the object from the lens (\[u\]) is negative.
\[\begin{gathered}
P = \dfrac{1}{f} = 0.44c{m^{ - 1}} = 44{m^{ - 1}} = 44D \\
1D = 1{m^{ - 1}} \\
\end{gathered} \]
Image is obtained at retina, the measurement from the lens to retina is the same direction of the light ray. So \[v\] is positive. Distance between the retina and lens is already given,
\[v = 2.5cm\]
From the lens equation,
\[\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u} = (\dfrac{1}{{2.5}}) - (\dfrac{1}{{ - 25}}) = \dfrac{1}{{2.5}} + \dfrac{1}{{25}}\]
\[\dfrac{1}{f} = \dfrac{{25 + 2.5}}{{25 \times 2.5}} = \dfrac{{27.5}}{{62.5}} = 0.44c{m^{ - 1}}\]
Power \[P = \dfrac{1}{f} = 0.44c{m^{ - 1}} = 44{m^{ - 1}} = 44D\]
So the answer is
(a) Far point, infinity,
Power \[P = 40D\]
(b) Near point, \[25cm\] from the eye.
Power \[P = 44D\]
Note:-
- We can use the conversion\[1cm = {10^{ - 2}}m = 0.01m\].
- We can recall the conversion\[1c{m^{ - 1}} = {10^2}{m^{ - 1}} = 100{m^{ - 1}}\].
- The unit for power of lens is Diopter (\[D\])
\[1D = 1{m^{ - 1}}\]
- A change in shape of the eye can alter the focal length of the eye.
- Sign convention always considers these types of problems.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Difference Between Plant Cell and Animal Cell