
Calculate the pH of the following solutions:
(i) \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M HCl}}\]
(ii) \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M NaOH}}\]
Answer
554.7k+ views
Hint:
(i) You can calculate the pH of the solution by using the following formula
\[{\text{pH}} = - {\log _{10}}\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right]\]
Here, the hydronium ion concentration is the sum of the hydronium ion concentrations from the ionization of hydrochloric acid and the autoionization of water.
(ii) You can calculate the pOH of the solution by using the following formula
\[{\text{pOH}} = - {\log _{10}}\left[ {{\text{O}}{{\text{H}}^ - }} \right]\]
Here, the hydroxide ion concentration is the sum of the hydroxide ion concentrations from the ionization of sodium hydroxide and the autoionization of water.
From pOH, you can calculate the pH using the formula \[{\text{pOH = 14}} - {\text{pH}}\] .
Complete answer:
(i) From \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M HCl}}\] solution,
\[\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right] = 1.0{\text{ }} \times {10^{ - 8}}{\text{ M}}\]
From autoionization of water
\[\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right] = 1.0{\text{ }} \times {10^{ - 7}}{\text{ M}}\]
Calculate the total hydronium ion concentration
\[\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right] = 1.0{\text{ }} \times {10^{ - 8}}{\text{ M}} + 1.0{\text{ }} \times {10^{ - 8}}{\text{ M = }}1.1{\text{ }} \times {10^{ - 7}}{\text{ M}}\]
Calculate the pH of the solution
\[{\text{pH}} = - {\log _{10}}\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right]{\text{ = }} - {\log _{10}}1.1{\text{ }} \times {10^{ - 7}}{\text{ M = 6}}{\text{.96}}\]
Hence, the pH of \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M HCl}}\] solution is 6.96.
(ii) From \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M NaOH}}\] solution,
\[\left[ {{\text{O}}{{\text{H}}^ - }} \right] = 1.0{\text{ }} \times {10^{ - 8}}{\text{ M}}\]
From autoionization of water
\[\left[ {{\text{O}}{{\text{H}}^ - }} \right] = 1.0{\text{ }} \times {10^{ - 7}}{\text{ M}}\]
Calculate the total hydroxide ion concentration
\[\left[ {{\text{O}}{{\text{H}}^ - }} \right] = 1.0{\text{ }} \times {10^{ - 8}}{\text{ M}} + 1.0{\text{ }} \times {10^{ - 8}}{\text{ M = }}1.1{\text{ }} \times {10^{ - 7}}{\text{ M}}\]
Calculate the pOH of the solution
\[{\text{pOH}} = - {\log _{10}}\left[ {{\text{O}}{{\text{H}}^ - }} \right]{\text{ = }} - {\log _{10}}1.1{\text{ }} \times {10^{ - 7}}{\text{ M = 6}}{\text{.96}}\]
Calculate the pH of the solution
\[{\text{pH = 14}} - {\text{pOH}} = 14 - {\text{6}}{\text{.96 = 7}}{\text{.04}}\]
Hence, the pH of \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M NaOH}}\] solution is 7.04.
Note:
If you do not consider the autoionization of water, then you will get the wrong answer. For example, for \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M HCl}}\] the pH value will be
\[{\text{pH}} = - {\log _{10}}\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right]{\text{ = }} - {\log _{10}}1.0{\text{ }} \times {10^{ - 8}}{\text{ M = 8}}\]
An acidic solution cannot have pH greater than 7.
Again, for \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M NaOH}}\] the pOH value will be
\[{\text{pOH}} = - {\log _{10}}\left[ {{\text{O}}{{\text{H}}^ - }} \right]{\text{ = }} - {\log _{10}}1.0{\text{ }} \times {10^{ - 8}}{\text{ M = 8}}\]
A basic solution cannot have pOH greater than 7.
(i) You can calculate the pH of the solution by using the following formula
\[{\text{pH}} = - {\log _{10}}\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right]\]
Here, the hydronium ion concentration is the sum of the hydronium ion concentrations from the ionization of hydrochloric acid and the autoionization of water.
(ii) You can calculate the pOH of the solution by using the following formula
\[{\text{pOH}} = - {\log _{10}}\left[ {{\text{O}}{{\text{H}}^ - }} \right]\]
Here, the hydroxide ion concentration is the sum of the hydroxide ion concentrations from the ionization of sodium hydroxide and the autoionization of water.
From pOH, you can calculate the pH using the formula \[{\text{pOH = 14}} - {\text{pH}}\] .
Complete answer:
(i) From \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M HCl}}\] solution,
\[\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right] = 1.0{\text{ }} \times {10^{ - 8}}{\text{ M}}\]
From autoionization of water
\[\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right] = 1.0{\text{ }} \times {10^{ - 7}}{\text{ M}}\]
Calculate the total hydronium ion concentration
\[\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right] = 1.0{\text{ }} \times {10^{ - 8}}{\text{ M}} + 1.0{\text{ }} \times {10^{ - 8}}{\text{ M = }}1.1{\text{ }} \times {10^{ - 7}}{\text{ M}}\]
Calculate the pH of the solution
\[{\text{pH}} = - {\log _{10}}\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right]{\text{ = }} - {\log _{10}}1.1{\text{ }} \times {10^{ - 7}}{\text{ M = 6}}{\text{.96}}\]
Hence, the pH of \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M HCl}}\] solution is 6.96.
(ii) From \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M NaOH}}\] solution,
\[\left[ {{\text{O}}{{\text{H}}^ - }} \right] = 1.0{\text{ }} \times {10^{ - 8}}{\text{ M}}\]
From autoionization of water
\[\left[ {{\text{O}}{{\text{H}}^ - }} \right] = 1.0{\text{ }} \times {10^{ - 7}}{\text{ M}}\]
Calculate the total hydroxide ion concentration
\[\left[ {{\text{O}}{{\text{H}}^ - }} \right] = 1.0{\text{ }} \times {10^{ - 8}}{\text{ M}} + 1.0{\text{ }} \times {10^{ - 8}}{\text{ M = }}1.1{\text{ }} \times {10^{ - 7}}{\text{ M}}\]
Calculate the pOH of the solution
\[{\text{pOH}} = - {\log _{10}}\left[ {{\text{O}}{{\text{H}}^ - }} \right]{\text{ = }} - {\log _{10}}1.1{\text{ }} \times {10^{ - 7}}{\text{ M = 6}}{\text{.96}}\]
Calculate the pH of the solution
\[{\text{pH = 14}} - {\text{pOH}} = 14 - {\text{6}}{\text{.96 = 7}}{\text{.04}}\]
Hence, the pH of \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M NaOH}}\] solution is 7.04.
Note:
If you do not consider the autoionization of water, then you will get the wrong answer. For example, for \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M HCl}}\] the pH value will be
\[{\text{pH}} = - {\log _{10}}\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right]{\text{ = }} - {\log _{10}}1.0{\text{ }} \times {10^{ - 8}}{\text{ M = 8}}\]
An acidic solution cannot have pH greater than 7.
Again, for \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M NaOH}}\] the pOH value will be
\[{\text{pOH}} = - {\log _{10}}\left[ {{\text{O}}{{\text{H}}^ - }} \right]{\text{ = }} - {\log _{10}}1.0{\text{ }} \times {10^{ - 8}}{\text{ M = 8}}\]
A basic solution cannot have pOH greater than 7.
Recently Updated Pages
A scooter was bought at Rs 42000 Its value depreciated class 11 maths CBSE

Vascular bundles in a dicot leaf are aConjoint collateral class 11 biology CBSE

With the help of a labelled diagram describe the structure class 11 biology CBSE

What are the sources of sound class 11 physics CBSE

What Is The Chemical Equation Between Citric Acid And class 11 chemistry CBSE

Explain any five powers of Lok Sabha class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

