
Calculate the pH of \[1.0 \times {10^{ - 3}}M\] sodium phenolate \[{\text{NaO}}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}\] . \[{K_a}\] for \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{OH}}\] is \[1.0 \times {10^{ - 10}}\] .
Answer
580.2k+ views
Hint: The hydrolysis of sodium phenolate in the aqueous medium gives phenol and hydroxide ions. The expression for the hydrolysis constant is \[{{\text{K}}_{\text{h}}} = \dfrac{{\left[ {{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{OH}}} \right]{\text{ $\times$ }}\left[ {{\text{O}}{{\text{H}}^ - }} \right]}}{{\left[ {{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{{\text{O}}^ - }} \right]}}\]. The hydrolysis constant is related to the acid dissociation constant and the ionic product of water through the relation \[{{\text{K}}_{\text{h}}} = \dfrac{{{{\text{K}}_{\text{w}}}}}{{{{\text{K}}_{\text{a}}}}}\] .
Complete answer:
Let C be the initial concentration of sodium phenolate and h be its degree of hydrolysis. Write the equilibrium for the hydrolysis of sodium phenolate in the aqueous solution.
\[{\text{Reaction at Equilibrium: }}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{{\text{O}}^ - }{\text{ + }}{{\text{H}}_2}{\text{O }} \rightleftharpoons {\text{ }}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{OH + O}}{{\text{H}}^ - } \\
{\text{Initial concentration C }} \\
{\text{Equilibrium concentration C}}\left( {1 - {\text{h}}} \right){\text{ $\;\;\;\;\;\;\;\;\;\;$ Ch $\;\;\;\;\;\;\;\;\;\;\;\;$ Ch }} \\
\]
Write the expression for the hydrolysis constant.
\[{{\text{K}}_{\text{h}}} = \dfrac{{{\text{Ch $\times$ Ch}}}}{{{\text{C}}\left( {{\text{1}} - {\text{h}}} \right)}}\]
Assume the degree of hydrolysis to be much smaller than 1.
\[
{{\text{K}}_{\text{h}}} = \dfrac{{{\text{Ch $\times$ Ch}}}}{{\text{C}}}{\text{ }}\left( {\because \left( {{\text{1}} - {\text{h}}} \right) \approx 1} \right) \\
{{\text{K}}_{\text{h}}} = {\text{ C}}{{\text{h}}^{\text{2}}} \\
\]
But \[{{\text{K}}_{\text{h}}} = \dfrac{{{{\text{K}}_{\text{w}}}}}{{{{\text{K}}_{\text{a}}}}} = \dfrac{{{{10}^{ - 14}}}}{{{{10}^{ - 10}}}} = {10^{ - 4}}\]
Substitute values in the expression for the hydrolysis constant.
\[
{{\text{K}}_{\text{h}}} = {\text{C}}{{\text{h}}^2} \\
{10^{ - 4}} = \left( {1.0 \times {{10}^{ - 3}}} \right){{\text{h}}^2} \\
{{\text{h}}^2} = \dfrac{{{{10}^{ - 4}}}}{{\left( {1.0 \times {{10}^{ - 3}}} \right)}} = {10^{ - 1}} \\
\]
Take square roots on both sides.
\[{\text{h = 0}}{\text{.316}}\]
Calculate hydroxide ion concentration
\[
\left[ {{\text{O}}{{\text{H}}^ - }} \right] = {\text{C}}{{\text{h}}^2} \\
\left[ {{\text{O}}{{\text{H}}^ - }} \right] = \left( {1.0 \times {{10}^{ - 3}}} \right) \times {\text{0}}{\text{.316}} \\
\left[ {{\text{O}}{{\text{H}}^ - }} \right] = 3.16 \times {10^{ - 4}}{\text{ M}} \\
\]
Calculate hydrogen ion concentration:
\[
\left[ {{{\text{H}}^ + }} \right] = \dfrac{{{K_w}}}{{\left[ {{\text{O}}{{\text{H}}^ - }} \right]}} \\
\left[ {{{\text{H}}^ + }} \right] = \dfrac{{1 \times {{10}^{ - 14}}}}{{3.16 \times {{10}^{ - 4}}}} \\
\left[ {{{\text{H}}^ + }} \right] = 3.16 \times {10^{ - 11}}{\text{ M}} \\
\]
Calculate pH of the solution:
\[
{\text{pH}} = - {\log _{10}}\left[ {{{\text{H}}^ + }} \right] \\
{\text{pH}} = - {\log _{10}}(3.16 \times {10^{ - 11})}{\text{ M}} \\
{\text{pH}} = 10.43 \\
\]
Hence, the pH of the solution is 10.43.
Note: The ionic product of water is \[{K_w} = \left[ {{{\text{H}}^ + }} \right]\left[ {{\text{O}}{{\text{H}}^ - }} \right] = 1 \times {10^{ - 14}}\] .
pH and pOH are also related as \[{\text{pH + pOH = 14}}\] .
Once hydroxide ion is calculated, one can also calculate pOH and then calculate pH.
\[{\text{pOH}} = - {\log _{10}}\left[ {{\text{O}}{{\text{H}}^ - }} \right]\]
\[{\text{pH = 14}} - {\text{pOH}}\]
Complete answer:
Let C be the initial concentration of sodium phenolate and h be its degree of hydrolysis. Write the equilibrium for the hydrolysis of sodium phenolate in the aqueous solution.
\[{\text{Reaction at Equilibrium: }}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{{\text{O}}^ - }{\text{ + }}{{\text{H}}_2}{\text{O }} \rightleftharpoons {\text{ }}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{OH + O}}{{\text{H}}^ - } \\
{\text{Initial concentration C }} \\
{\text{Equilibrium concentration C}}\left( {1 - {\text{h}}} \right){\text{ $\;\;\;\;\;\;\;\;\;\;$ Ch $\;\;\;\;\;\;\;\;\;\;\;\;$ Ch }} \\
\]
Write the expression for the hydrolysis constant.
\[{{\text{K}}_{\text{h}}} = \dfrac{{{\text{Ch $\times$ Ch}}}}{{{\text{C}}\left( {{\text{1}} - {\text{h}}} \right)}}\]
Assume the degree of hydrolysis to be much smaller than 1.
\[
{{\text{K}}_{\text{h}}} = \dfrac{{{\text{Ch $\times$ Ch}}}}{{\text{C}}}{\text{ }}\left( {\because \left( {{\text{1}} - {\text{h}}} \right) \approx 1} \right) \\
{{\text{K}}_{\text{h}}} = {\text{ C}}{{\text{h}}^{\text{2}}} \\
\]
But \[{{\text{K}}_{\text{h}}} = \dfrac{{{{\text{K}}_{\text{w}}}}}{{{{\text{K}}_{\text{a}}}}} = \dfrac{{{{10}^{ - 14}}}}{{{{10}^{ - 10}}}} = {10^{ - 4}}\]
Substitute values in the expression for the hydrolysis constant.
\[
{{\text{K}}_{\text{h}}} = {\text{C}}{{\text{h}}^2} \\
{10^{ - 4}} = \left( {1.0 \times {{10}^{ - 3}}} \right){{\text{h}}^2} \\
{{\text{h}}^2} = \dfrac{{{{10}^{ - 4}}}}{{\left( {1.0 \times {{10}^{ - 3}}} \right)}} = {10^{ - 1}} \\
\]
Take square roots on both sides.
\[{\text{h = 0}}{\text{.316}}\]
Calculate hydroxide ion concentration
\[
\left[ {{\text{O}}{{\text{H}}^ - }} \right] = {\text{C}}{{\text{h}}^2} \\
\left[ {{\text{O}}{{\text{H}}^ - }} \right] = \left( {1.0 \times {{10}^{ - 3}}} \right) \times {\text{0}}{\text{.316}} \\
\left[ {{\text{O}}{{\text{H}}^ - }} \right] = 3.16 \times {10^{ - 4}}{\text{ M}} \\
\]
Calculate hydrogen ion concentration:
\[
\left[ {{{\text{H}}^ + }} \right] = \dfrac{{{K_w}}}{{\left[ {{\text{O}}{{\text{H}}^ - }} \right]}} \\
\left[ {{{\text{H}}^ + }} \right] = \dfrac{{1 \times {{10}^{ - 14}}}}{{3.16 \times {{10}^{ - 4}}}} \\
\left[ {{{\text{H}}^ + }} \right] = 3.16 \times {10^{ - 11}}{\text{ M}} \\
\]
Calculate pH of the solution:
\[
{\text{pH}} = - {\log _{10}}\left[ {{{\text{H}}^ + }} \right] \\
{\text{pH}} = - {\log _{10}}(3.16 \times {10^{ - 11})}{\text{ M}} \\
{\text{pH}} = 10.43 \\
\]
Hence, the pH of the solution is 10.43.
Note: The ionic product of water is \[{K_w} = \left[ {{{\text{H}}^ + }} \right]\left[ {{\text{O}}{{\text{H}}^ - }} \right] = 1 \times {10^{ - 14}}\] .
pH and pOH are also related as \[{\text{pH + pOH = 14}}\] .
Once hydroxide ion is calculated, one can also calculate pOH and then calculate pH.
\[{\text{pOH}} = - {\log _{10}}\left[ {{\text{O}}{{\text{H}}^ - }} \right]\]
\[{\text{pH = 14}} - {\text{pOH}}\]
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

