
Calculate the pH of \[1.0 \times {10^{ - 3}}M\] sodium phenolate \[{\text{NaO}}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}\] . \[{K_a}\] for \[{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{OH}}\] is \[1.0 \times {10^{ - 10}}\] .
Answer
582.3k+ views
Hint: The hydrolysis of sodium phenolate in the aqueous medium gives phenol and hydroxide ions. The expression for the hydrolysis constant is \[{{\text{K}}_{\text{h}}} = \dfrac{{\left[ {{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{OH}}} \right]{\text{ $\times$ }}\left[ {{\text{O}}{{\text{H}}^ - }} \right]}}{{\left[ {{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{{\text{O}}^ - }} \right]}}\]. The hydrolysis constant is related to the acid dissociation constant and the ionic product of water through the relation \[{{\text{K}}_{\text{h}}} = \dfrac{{{{\text{K}}_{\text{w}}}}}{{{{\text{K}}_{\text{a}}}}}\] .
Complete answer:
Let C be the initial concentration of sodium phenolate and h be its degree of hydrolysis. Write the equilibrium for the hydrolysis of sodium phenolate in the aqueous solution.
\[{\text{Reaction at Equilibrium: }}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{{\text{O}}^ - }{\text{ + }}{{\text{H}}_2}{\text{O }} \rightleftharpoons {\text{ }}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{OH + O}}{{\text{H}}^ - } \\
{\text{Initial concentration C }} \\
{\text{Equilibrium concentration C}}\left( {1 - {\text{h}}} \right){\text{ $\;\;\;\;\;\;\;\;\;\;$ Ch $\;\;\;\;\;\;\;\;\;\;\;\;$ Ch }} \\
\]
Write the expression for the hydrolysis constant.
\[{{\text{K}}_{\text{h}}} = \dfrac{{{\text{Ch $\times$ Ch}}}}{{{\text{C}}\left( {{\text{1}} - {\text{h}}} \right)}}\]
Assume the degree of hydrolysis to be much smaller than 1.
\[
{{\text{K}}_{\text{h}}} = \dfrac{{{\text{Ch $\times$ Ch}}}}{{\text{C}}}{\text{ }}\left( {\because \left( {{\text{1}} - {\text{h}}} \right) \approx 1} \right) \\
{{\text{K}}_{\text{h}}} = {\text{ C}}{{\text{h}}^{\text{2}}} \\
\]
But \[{{\text{K}}_{\text{h}}} = \dfrac{{{{\text{K}}_{\text{w}}}}}{{{{\text{K}}_{\text{a}}}}} = \dfrac{{{{10}^{ - 14}}}}{{{{10}^{ - 10}}}} = {10^{ - 4}}\]
Substitute values in the expression for the hydrolysis constant.
\[
{{\text{K}}_{\text{h}}} = {\text{C}}{{\text{h}}^2} \\
{10^{ - 4}} = \left( {1.0 \times {{10}^{ - 3}}} \right){{\text{h}}^2} \\
{{\text{h}}^2} = \dfrac{{{{10}^{ - 4}}}}{{\left( {1.0 \times {{10}^{ - 3}}} \right)}} = {10^{ - 1}} \\
\]
Take square roots on both sides.
\[{\text{h = 0}}{\text{.316}}\]
Calculate hydroxide ion concentration
\[
\left[ {{\text{O}}{{\text{H}}^ - }} \right] = {\text{C}}{{\text{h}}^2} \\
\left[ {{\text{O}}{{\text{H}}^ - }} \right] = \left( {1.0 \times {{10}^{ - 3}}} \right) \times {\text{0}}{\text{.316}} \\
\left[ {{\text{O}}{{\text{H}}^ - }} \right] = 3.16 \times {10^{ - 4}}{\text{ M}} \\
\]
Calculate hydrogen ion concentration:
\[
\left[ {{{\text{H}}^ + }} \right] = \dfrac{{{K_w}}}{{\left[ {{\text{O}}{{\text{H}}^ - }} \right]}} \\
\left[ {{{\text{H}}^ + }} \right] = \dfrac{{1 \times {{10}^{ - 14}}}}{{3.16 \times {{10}^{ - 4}}}} \\
\left[ {{{\text{H}}^ + }} \right] = 3.16 \times {10^{ - 11}}{\text{ M}} \\
\]
Calculate pH of the solution:
\[
{\text{pH}} = - {\log _{10}}\left[ {{{\text{H}}^ + }} \right] \\
{\text{pH}} = - {\log _{10}}(3.16 \times {10^{ - 11})}{\text{ M}} \\
{\text{pH}} = 10.43 \\
\]
Hence, the pH of the solution is 10.43.
Note: The ionic product of water is \[{K_w} = \left[ {{{\text{H}}^ + }} \right]\left[ {{\text{O}}{{\text{H}}^ - }} \right] = 1 \times {10^{ - 14}}\] .
pH and pOH are also related as \[{\text{pH + pOH = 14}}\] .
Once hydroxide ion is calculated, one can also calculate pOH and then calculate pH.
\[{\text{pOH}} = - {\log _{10}}\left[ {{\text{O}}{{\text{H}}^ - }} \right]\]
\[{\text{pH = 14}} - {\text{pOH}}\]
Complete answer:
Let C be the initial concentration of sodium phenolate and h be its degree of hydrolysis. Write the equilibrium for the hydrolysis of sodium phenolate in the aqueous solution.
\[{\text{Reaction at Equilibrium: }}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{{\text{O}}^ - }{\text{ + }}{{\text{H}}_2}{\text{O }} \rightleftharpoons {\text{ }}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{OH + O}}{{\text{H}}^ - } \\
{\text{Initial concentration C }} \\
{\text{Equilibrium concentration C}}\left( {1 - {\text{h}}} \right){\text{ $\;\;\;\;\;\;\;\;\;\;$ Ch $\;\;\;\;\;\;\;\;\;\;\;\;$ Ch }} \\
\]
Write the expression for the hydrolysis constant.
\[{{\text{K}}_{\text{h}}} = \dfrac{{{\text{Ch $\times$ Ch}}}}{{{\text{C}}\left( {{\text{1}} - {\text{h}}} \right)}}\]
Assume the degree of hydrolysis to be much smaller than 1.
\[
{{\text{K}}_{\text{h}}} = \dfrac{{{\text{Ch $\times$ Ch}}}}{{\text{C}}}{\text{ }}\left( {\because \left( {{\text{1}} - {\text{h}}} \right) \approx 1} \right) \\
{{\text{K}}_{\text{h}}} = {\text{ C}}{{\text{h}}^{\text{2}}} \\
\]
But \[{{\text{K}}_{\text{h}}} = \dfrac{{{{\text{K}}_{\text{w}}}}}{{{{\text{K}}_{\text{a}}}}} = \dfrac{{{{10}^{ - 14}}}}{{{{10}^{ - 10}}}} = {10^{ - 4}}\]
Substitute values in the expression for the hydrolysis constant.
\[
{{\text{K}}_{\text{h}}} = {\text{C}}{{\text{h}}^2} \\
{10^{ - 4}} = \left( {1.0 \times {{10}^{ - 3}}} \right){{\text{h}}^2} \\
{{\text{h}}^2} = \dfrac{{{{10}^{ - 4}}}}{{\left( {1.0 \times {{10}^{ - 3}}} \right)}} = {10^{ - 1}} \\
\]
Take square roots on both sides.
\[{\text{h = 0}}{\text{.316}}\]
Calculate hydroxide ion concentration
\[
\left[ {{\text{O}}{{\text{H}}^ - }} \right] = {\text{C}}{{\text{h}}^2} \\
\left[ {{\text{O}}{{\text{H}}^ - }} \right] = \left( {1.0 \times {{10}^{ - 3}}} \right) \times {\text{0}}{\text{.316}} \\
\left[ {{\text{O}}{{\text{H}}^ - }} \right] = 3.16 \times {10^{ - 4}}{\text{ M}} \\
\]
Calculate hydrogen ion concentration:
\[
\left[ {{{\text{H}}^ + }} \right] = \dfrac{{{K_w}}}{{\left[ {{\text{O}}{{\text{H}}^ - }} \right]}} \\
\left[ {{{\text{H}}^ + }} \right] = \dfrac{{1 \times {{10}^{ - 14}}}}{{3.16 \times {{10}^{ - 4}}}} \\
\left[ {{{\text{H}}^ + }} \right] = 3.16 \times {10^{ - 11}}{\text{ M}} \\
\]
Calculate pH of the solution:
\[
{\text{pH}} = - {\log _{10}}\left[ {{{\text{H}}^ + }} \right] \\
{\text{pH}} = - {\log _{10}}(3.16 \times {10^{ - 11})}{\text{ M}} \\
{\text{pH}} = 10.43 \\
\]
Hence, the pH of the solution is 10.43.
Note: The ionic product of water is \[{K_w} = \left[ {{{\text{H}}^ + }} \right]\left[ {{\text{O}}{{\text{H}}^ - }} \right] = 1 \times {10^{ - 14}}\] .
pH and pOH are also related as \[{\text{pH + pOH = 14}}\] .
Once hydroxide ion is calculated, one can also calculate pOH and then calculate pH.
\[{\text{pOH}} = - {\log _{10}}\left[ {{\text{O}}{{\text{H}}^ - }} \right]\]
\[{\text{pH = 14}} - {\text{pOH}}\]
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

