
Calculate the perimeter and area of a quadrant of a circle whose radii are
i) 98
ii) 70
iii) 42
iv) 28
Answer
600.3k+ views
Hint: Perimeter can be defined as the total length of the boundary of a geometrical figure. Area can be defined as the space occupied by a flat shape or the surface of an object. So, using this definition we can easily solve our problem.
Complete step-by-step answer:
If a circle is drawn from the origin, then the quadrant of a circle can be defined as a portion of the circle which lies between the positive x-axis and positive y-axis.
In general, the perimeter of the quadrant of circle $=\dfrac{\pi r}{2}+2r$.
The area of quadrant of a circle $=\dfrac{1}{4}\pi {{r}^{2}}$.
i) Perimeter of quadrant of a circle of radius 98 cm $=\dfrac{\pi (98)}{2}+2\times 98=350cm$
Area of quadrant of circle of radius 98 cm$=\dfrac{1}{4}\times \pi \times {{(98)}^{2}}=7546c{{m}^{2}}$
ii) Perimeter of quadrant of a circle of radius 70 cm $=\dfrac{\pi (70)}{2}+2\times 70=250cm$
Area of quadrant of circle of radius 70 cm$=\dfrac{1}{4}\times \pi \times {{(70)}^{2}}=3850c{{m}^{2}}$
iii) Perimeter of quadrant of a circle of radius 42 cm $=\dfrac{\pi (42)}{2}+2\times 42=150cm$
Area of quadrant of circle of radius 42 cm $=\dfrac{1}{4}\times \pi \times {{(42)}^{2}}=1386c{{m}^{2}}$
iv) Perimeter of quadrant of a circle of radius 28 cm $=\dfrac{\pi (28)}{2}+2\times 28=100cm$
Area of quadrant of circle of radius 28 cm $=\dfrac{1}{4}\times \pi \times {{(28)}^{2}}=616c{{m}^{2}}$
Note: The key step for solving this problem is the knowledge of area and perimeter of a geometrical figure. In this case, the given figure is a quadrant of a circle. So, on constructing the figure we obtain the area and parameter in generalized form. After putting values in the formula, we get the desired result.
Complete step-by-step answer:
If a circle is drawn from the origin, then the quadrant of a circle can be defined as a portion of the circle which lies between the positive x-axis and positive y-axis.
In general, the perimeter of the quadrant of circle $=\dfrac{\pi r}{2}+2r$.
The area of quadrant of a circle $=\dfrac{1}{4}\pi {{r}^{2}}$.
i) Perimeter of quadrant of a circle of radius 98 cm $=\dfrac{\pi (98)}{2}+2\times 98=350cm$
Area of quadrant of circle of radius 98 cm$=\dfrac{1}{4}\times \pi \times {{(98)}^{2}}=7546c{{m}^{2}}$
ii) Perimeter of quadrant of a circle of radius 70 cm $=\dfrac{\pi (70)}{2}+2\times 70=250cm$
Area of quadrant of circle of radius 70 cm$=\dfrac{1}{4}\times \pi \times {{(70)}^{2}}=3850c{{m}^{2}}$
iii) Perimeter of quadrant of a circle of radius 42 cm $=\dfrac{\pi (42)}{2}+2\times 42=150cm$
Area of quadrant of circle of radius 42 cm $=\dfrac{1}{4}\times \pi \times {{(42)}^{2}}=1386c{{m}^{2}}$
iv) Perimeter of quadrant of a circle of radius 28 cm $=\dfrac{\pi (28)}{2}+2\times 28=100cm$
Area of quadrant of circle of radius 28 cm $=\dfrac{1}{4}\times \pi \times {{(28)}^{2}}=616c{{m}^{2}}$
Note: The key step for solving this problem is the knowledge of area and perimeter of a geometrical figure. In this case, the given figure is a quadrant of a circle. So, on constructing the figure we obtain the area and parameter in generalized form. After putting values in the formula, we get the desired result.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

