
Calculate the percentage ionisation of $0.01M$ acetic acid in $0.1M$$HCl$.${{K}_{a}}$of acetic acid is $1.8x{{10}^{-5}}$ .
A. $0.18%$
B. $0.018%$
C. $1.8%$
D. $18%$
Answer
561.3k+ views
Hint: An ionisation constant denoted by the symbol $\left( K \right)$ depends upon the equilibrium between ions and molecules that do not undergo complete ionisation in solution. It can be used to calculate the degree of dissociation or ionisation. For acids the ionisation constant is defined as ${{K}_{a}}$ . More the value of ionisation constant more is the dissociation of acid.
Formula Used:
$\alpha =\dfrac{D.M}{I.M}$
Where, $\alpha $ is the degree of dissociation
$D.M$ is the dissociated moles
$I.M$ is the initial moles
${{K}_{a}}=\dfrac{\left[ P \right]}{\left[ R \right]}$
${{K}_{a}}$ is the dissociation constant of acid
$P$ is concentration of the product
$R$ is the concentration of the reactant
Complete step by step answer:
Here, it is given that the concentration of acetic acid is $0.01M$ and the concentration of $HCl$ is $0.1M$
Dissociation constant of an acetic acid is $1.8\times {{10}^{-5}}$
$HCl$ is a strong acid so it will completely dissociates to give the product that is equal to the reactant
$HCl\to {{H}^{+}}+C{{l}^{-}}$
The concentration of $\left[ {{H}^{+}} \right]={{10}^{-1}}$
Now, the acetic acid is a weak acid that will not completely dissociate to give ions.
$C{{H}_{3}}COOH\rightleftharpoons C{{H}_{3}}CO{{O}^{-}}+{{H}^{+}}$
${{K}_{a}}=\dfrac{\left[ P \right]}{\left[ R \right]}$
Where, ${{K}_{a}}$ is the dissociation constant of an acid
$P$ is concentration of product
$R$ is the concentration of reactant
Now, substituting the values in the above formula we get,
${{K}_{a}}=\dfrac{\left[ C{{H}_{3}}CO{{O}^{-}} \right]\left[ {{H}^{+}} \right]}{\left[ C{{H}_{3}}COOH \right]}$
${{K}_{a}}=\dfrac{x\left( x+{{10}^{-1}} \right)}{0.01-x}$
Now substituting the value of ${{K}_{a}}$
$1.8\times {{10}^{-5}}=\dfrac{x\left( x+{{10}^{-1}} \right)}{0.01-x}$
Acetic acid is a weak acid, therefore $0.01-x\approx 0.01$ and $x+0.1\approx 0.1$
Now, on substituting the value we get,
$1.8\times {{10}^{-5}}=\dfrac{x\times 0.1}{0.01}$
$x=1.8\times {{10}^{-6}}$
The degree of dissociation
$\alpha =\dfrac{D.M}{I.M}$
$\alpha $ is the degree of dissociation
$D.M$ is the dissociated moles
$I.M$ is the initial moles
Now, substituting the value we get,
$\alpha =\dfrac{x}{0.01}$
On further solving,
$\alpha =\dfrac{1.8\times {{10}^{-6}}}{0.01}$
$\alpha =1.8\times {{10}^{-4}}$
The percentage ionization is $1.8\times {{10}^{-4}}\times 100=0.018%$
So, the correct answer is “Option B”.
Note: The formula is used for calculation of the degree of dissociation is applicable for weak electrolytes only. The law given is also known as Ostwald’s dilution law. In case of strong electrolytes, we can’t apply this law.
Formula Used:
$\alpha =\dfrac{D.M}{I.M}$
Where, $\alpha $ is the degree of dissociation
$D.M$ is the dissociated moles
$I.M$ is the initial moles
${{K}_{a}}=\dfrac{\left[ P \right]}{\left[ R \right]}$
${{K}_{a}}$ is the dissociation constant of acid
$P$ is concentration of the product
$R$ is the concentration of the reactant
Complete step by step answer:
Here, it is given that the concentration of acetic acid is $0.01M$ and the concentration of $HCl$ is $0.1M$
Dissociation constant of an acetic acid is $1.8\times {{10}^{-5}}$
$HCl$ is a strong acid so it will completely dissociates to give the product that is equal to the reactant
$HCl\to {{H}^{+}}+C{{l}^{-}}$
The concentration of $\left[ {{H}^{+}} \right]={{10}^{-1}}$
Now, the acetic acid is a weak acid that will not completely dissociate to give ions.
$C{{H}_{3}}COOH\rightleftharpoons C{{H}_{3}}CO{{O}^{-}}+{{H}^{+}}$
| \[C{{H}_{3}}COOH\] | \[C{{H}_{3}}CO{{O}^{-}}\] | ${{H}^{+}}$ | |
| Initial concentration | $0.01M$ | $\_$ | $\_$ |
| Final concentration | $0.01-x$ | $x$ | $x+{{10}^{-1}}$. |
${{K}_{a}}=\dfrac{\left[ P \right]}{\left[ R \right]}$
Where, ${{K}_{a}}$ is the dissociation constant of an acid
$P$ is concentration of product
$R$ is the concentration of reactant
Now, substituting the values in the above formula we get,
${{K}_{a}}=\dfrac{\left[ C{{H}_{3}}CO{{O}^{-}} \right]\left[ {{H}^{+}} \right]}{\left[ C{{H}_{3}}COOH \right]}$
${{K}_{a}}=\dfrac{x\left( x+{{10}^{-1}} \right)}{0.01-x}$
Now substituting the value of ${{K}_{a}}$
$1.8\times {{10}^{-5}}=\dfrac{x\left( x+{{10}^{-1}} \right)}{0.01-x}$
Acetic acid is a weak acid, therefore $0.01-x\approx 0.01$ and $x+0.1\approx 0.1$
Now, on substituting the value we get,
$1.8\times {{10}^{-5}}=\dfrac{x\times 0.1}{0.01}$
$x=1.8\times {{10}^{-6}}$
The degree of dissociation
$\alpha =\dfrac{D.M}{I.M}$
$\alpha $ is the degree of dissociation
$D.M$ is the dissociated moles
$I.M$ is the initial moles
Now, substituting the value we get,
$\alpha =\dfrac{x}{0.01}$
On further solving,
$\alpha =\dfrac{1.8\times {{10}^{-6}}}{0.01}$
$\alpha =1.8\times {{10}^{-4}}$
The percentage ionization is $1.8\times {{10}^{-4}}\times 100=0.018%$
So, the correct answer is “Option B”.
Note: The formula is used for calculation of the degree of dissociation is applicable for weak electrolytes only. The law given is also known as Ostwald’s dilution law. In case of strong electrolytes, we can’t apply this law.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

Sketch the electric field lines in case of an electric class 12 physics CBSE

