
How do I calculate the force constant, zero-point energy, and the energy level spacings for $ ^{12}{C^{16}}O $ if $ {\tilde \omega _e} = 2170c{m^{ - 1}} $ ?
Answer
483.3k+ views
Hint: In here, we are dealing with anharmonic oscillator. The zero-point energy is the lowest energy of the molecule in the ground state denoted by $ {E_0} $ i.e., the energy $ {E_v} $ as the function of the vibrational quantum number $ v $ at $ v = 0 $ . The energy of the harmonic oscillator can be given as $ {E_v} = h{v_0}\left( {v + \dfrac{1}{2}} \right) $ .
Complete answer:
The information given to us is $ {\tilde \omega _e} = {\tilde v_e} = 2170c{m^{ - 1}} $
First we will need to convert $ {\tilde v_0} \to {v_0} $ . The prior is in $ c{m^{ - 1}} $ whereas the latter is in $ {s^{ - 1}} $ . The conversion can be done by using the formula: $ {\tilde v_0} = {\tilde v_e} - 2{\tilde v_e}{\chi _e} $
We need to find the value of $ {\tilde v_e}{\chi _e} = 13.28831 $ . substituting in the above equation we get; $ {\tilde v_0} = 2170c{m^{ - 1}} - 2(13.28831c{m^{ - 1}}) = 2143.4c{m^{ - 1}} $
On converting this into $ {s^{ - 1}} $ for finding the value of energy $ {E_v} $ . The conversion can be given as: $ {v_0} = {\tilde v_0}c $ where c is the speed/velocity of light in cm/s which is equal to $ 2.998 \times {10^{10}}cm/s $ . Substituting the vale in the above formula for conversion of $ {\tilde v_0} \to {v_0} $
$ {v_0} = (2143.4c{m^{ - 1}})(2.998 \times {10^{10}}cm/s) $
$ {v_0} = 6.426 \times {10^{13}}{s^{ - 1}} $
The zero point energy is the energy at v=0. Hence the zero point energy will be equal to: $ {E_0} = h{v_0}\left( {0 + \dfrac{1}{2}} \right) = \dfrac{1}{2}h{v_0} $
$ {E_0} = \dfrac{1}{2}(6.626 \times {10^{ - 34}}J.s)(6.426 \times {10^{13}}{s^{ - 1}}) $
$ {E_0} = 2.129 \times {10^{ - 20}}J $
This is the Zero Point energy. The energy level spacing can be given as the difference of energy between two levels. It can be given as $ \Delta E = {E_1} - {E_0} = {E_{v + 1}} - {E_v} $
$ \Delta E = h{v_0}\left( {v + 1 + \dfrac{1}{2}} \right) - h{v_0}\left( {v + \dfrac{1}{2}} \right) $
$ \Delta E = h{v_0}\left[ {\left( {v + \dfrac{3}{2}} \right) - \left( {v + \dfrac{1}{2}} \right)} \right] $
$ \Delta E = h{v_0} = (6.626 \times {10^{ - 34}}J.s)(6.426 \times {10^{13}}{s^{ - 1}}) $
$ \Delta E = 4.258 \times {10^{ - 20}}J $
Next, we need to find the force constant ‘k’. For this we’ll use the formula $ {v_0} = \dfrac{1}{{2\pi }}\sqrt {\dfrac{k}{\mu }} $ , where $ \mu $ is the reduced mass. The reduced mass is given as: $ \mu = \dfrac{{{m_1}{m_2}}}{{{m_1} + {m_2}}} $ . The molar masses should be in kg/mol. The compound given to us $ ^{12}{C^{16}}O $ .
The reduced mass will be $ = \dfrac{{12 \times 16}}{{12 + 16}} = 6.857g/mol = 0.00685kg/mol $
The force constant k from the above equation can be given as: $ k = \mu {(2\pi {v_0})^2} = \dfrac{{0.00685}}{{6.022 \times {{10}^{23}}}} \times {(2\pi \times 6.426 \times {10^{13}}{s^{ - 1}})^2} $
$ k = 1856.92kg/{s^2} = 1856.92N/m $ .
Note:
The formula $ {v_0} = \dfrac{1}{{2\pi }}\sqrt {\dfrac{k}{\mu }} $ is derived from the formula $ \omega = \sqrt {\dfrac{k}{m}} $ . $ \omega $ is the angular frequency. We will use the reduced mass here and treat it as one effective mass. We know that $ \dfrac{\omega }{{2\pi }} = {v_0} = \dfrac{1}{T} $ where T is the time period in seconds. Combining the equation with $ {v_0} = {\tilde v_0}c $ we get, $ {\tilde v_0} = \dfrac{1}{{2\pi c}}\sqrt {\dfrac{k}{\mu }} \to {v_0} = \dfrac{1}{{2\pi }}\sqrt {\dfrac{k}{\mu }} $ .
Complete answer:
The information given to us is $ {\tilde \omega _e} = {\tilde v_e} = 2170c{m^{ - 1}} $
First we will need to convert $ {\tilde v_0} \to {v_0} $ . The prior is in $ c{m^{ - 1}} $ whereas the latter is in $ {s^{ - 1}} $ . The conversion can be done by using the formula: $ {\tilde v_0} = {\tilde v_e} - 2{\tilde v_e}{\chi _e} $
We need to find the value of $ {\tilde v_e}{\chi _e} = 13.28831 $ . substituting in the above equation we get; $ {\tilde v_0} = 2170c{m^{ - 1}} - 2(13.28831c{m^{ - 1}}) = 2143.4c{m^{ - 1}} $
On converting this into $ {s^{ - 1}} $ for finding the value of energy $ {E_v} $ . The conversion can be given as: $ {v_0} = {\tilde v_0}c $ where c is the speed/velocity of light in cm/s which is equal to $ 2.998 \times {10^{10}}cm/s $ . Substituting the vale in the above formula for conversion of $ {\tilde v_0} \to {v_0} $
$ {v_0} = (2143.4c{m^{ - 1}})(2.998 \times {10^{10}}cm/s) $
$ {v_0} = 6.426 \times {10^{13}}{s^{ - 1}} $
The zero point energy is the energy at v=0. Hence the zero point energy will be equal to: $ {E_0} = h{v_0}\left( {0 + \dfrac{1}{2}} \right) = \dfrac{1}{2}h{v_0} $
$ {E_0} = \dfrac{1}{2}(6.626 \times {10^{ - 34}}J.s)(6.426 \times {10^{13}}{s^{ - 1}}) $
$ {E_0} = 2.129 \times {10^{ - 20}}J $
This is the Zero Point energy. The energy level spacing can be given as the difference of energy between two levels. It can be given as $ \Delta E = {E_1} - {E_0} = {E_{v + 1}} - {E_v} $
$ \Delta E = h{v_0}\left( {v + 1 + \dfrac{1}{2}} \right) - h{v_0}\left( {v + \dfrac{1}{2}} \right) $
$ \Delta E = h{v_0}\left[ {\left( {v + \dfrac{3}{2}} \right) - \left( {v + \dfrac{1}{2}} \right)} \right] $
$ \Delta E = h{v_0} = (6.626 \times {10^{ - 34}}J.s)(6.426 \times {10^{13}}{s^{ - 1}}) $
$ \Delta E = 4.258 \times {10^{ - 20}}J $
Next, we need to find the force constant ‘k’. For this we’ll use the formula $ {v_0} = \dfrac{1}{{2\pi }}\sqrt {\dfrac{k}{\mu }} $ , where $ \mu $ is the reduced mass. The reduced mass is given as: $ \mu = \dfrac{{{m_1}{m_2}}}{{{m_1} + {m_2}}} $ . The molar masses should be in kg/mol. The compound given to us $ ^{12}{C^{16}}O $ .
The reduced mass will be $ = \dfrac{{12 \times 16}}{{12 + 16}} = 6.857g/mol = 0.00685kg/mol $
The force constant k from the above equation can be given as: $ k = \mu {(2\pi {v_0})^2} = \dfrac{{0.00685}}{{6.022 \times {{10}^{23}}}} \times {(2\pi \times 6.426 \times {10^{13}}{s^{ - 1}})^2} $
$ k = 1856.92kg/{s^2} = 1856.92N/m $ .
Note:
The formula $ {v_0} = \dfrac{1}{{2\pi }}\sqrt {\dfrac{k}{\mu }} $ is derived from the formula $ \omega = \sqrt {\dfrac{k}{m}} $ . $ \omega $ is the angular frequency. We will use the reduced mass here and treat it as one effective mass. We know that $ \dfrac{\omega }{{2\pi }} = {v_0} = \dfrac{1}{T} $ where T is the time period in seconds. Combining the equation with $ {v_0} = {\tilde v_0}c $ we get, $ {\tilde v_0} = \dfrac{1}{{2\pi c}}\sqrt {\dfrac{k}{\mu }} \to {v_0} = \dfrac{1}{{2\pi }}\sqrt {\dfrac{k}{\mu }} $ .
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

