
Calculate the following limit: \[\displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{{{\cot }^{3}}x-\tan x}{\cos \left( x+\dfrac{\pi }{4} \right)}\]
A). $4$
B). $8\sqrt{2}$
C). $8$
D). $4\sqrt{2}$
Answer
590.7k+ views
Hint: We will first find out whether the given function is in the form of $\left( \dfrac{0}{0} \right)$ or $\left( \dfrac{\infty }{\infty } \right)$ by putting x as $\dfrac{\pi }{4}$in the function, We will then apply the L-Hospital Rule to find the definite value of the limit. After differentiating the numerator and the denominator, we will again put x as $\dfrac{\pi }{4}$ in the function to get the final limit
Complete step-by-step answer:
To find the limit of the given function: \[\displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{{{\cot }^{3}}x-\tan x}{\cos \left( x+\dfrac{\pi }{4} \right)}\]
As x is approaching $\dfrac{\pi }{4}$ as shown in the function, we will put as x as $\dfrac{\pi }{4}$ and see the value that comes:
Let’s take $f\left( x \right)=\dfrac{{{\cot }^{3}}x-\tan x}{\cos \left( x+\dfrac{\pi }{4} \right)}$, now when we put x as
$f\left( \dfrac{\pi }{4} \right)=\dfrac{{{\cot }^{3}}\dfrac{\pi }{4}-\tan \dfrac{\pi }{4}}{\cos \left( \dfrac{\pi }{4}+\dfrac{\pi }{4} \right)}\Rightarrow f\left( \dfrac{\pi }{4} \right)=\dfrac{{{\cot }^{3}}\dfrac{\pi }{4}-\tan \dfrac{\pi }{4}}{\cos \left( \dfrac{\pi }{2} \right)}............\text{ Equation 1}\text{.}$
Now, we know that:
$\begin{align}
& \cot \theta =\dfrac{\cos \theta }{\sin \theta }\Rightarrow \cot \dfrac{\pi }{4}=\dfrac{\cos \left( \dfrac{\pi }{4} \right)}{\sin \left( \dfrac{\pi }{4} \right)}\text{ }...........\text{Equation 2}\text{.} \\
& \\
\end{align}$
We already know that the value of $\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$ and $\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$ , so we will putting these values in Equation 2 in order to find value of $\cot \dfrac{\pi }{4}$:
$\cot \dfrac{\pi }{4}=\dfrac{\cos \left( \dfrac{\pi }{4} \right)}{\sin \left( \dfrac{\pi }{4} \right)}\Rightarrow \cot \dfrac{\pi }{4}=\dfrac{\dfrac{1}{\sqrt{2}}}{\dfrac{1}{\sqrt{2}}}$
After cancelling out $\dfrac{1}{\sqrt{2}}$ , we get $\cot \dfrac{\pi }{4}=1$.
Similarly we will find out the value of $\tan \dfrac{\pi }{4}$ :
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }\Rightarrow \tan \dfrac{\pi }{4}=\dfrac{\sin \left( \dfrac{\pi }{4} \right)}{\cos \left( \dfrac{\pi }{4} \right)}\text{ }...........\text{Equation 3}\text{.}$
We already know that the value of $\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$ and $\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$ , so we will putting these values in Equation 3 in order to find the value of $\tan \dfrac{\pi }{4}$:
$\tan \dfrac{\pi }{4}=\dfrac{\sin \left( \dfrac{\pi }{4} \right)}{\cos \left( \dfrac{\pi }{4} \right)}\Rightarrow \tan \dfrac{\pi }{4}=\dfrac{\dfrac{1}{\sqrt{2}}}{\dfrac{1}{\sqrt{2}}}$
After cancelling out $\dfrac{1}{\sqrt{2}}$ , we get $\tan \dfrac{\pi }{4}=1$.
Putting the values of $\tan \dfrac{\pi }{4}$ and $\cot \dfrac{\pi }{4}$ in Equation 1.
We have: $f\left( \dfrac{\pi }{4} \right)=\dfrac{{{\cot }^{3}}\dfrac{\pi }{4}-\tan \dfrac{\pi }{4}}{\cos \left( \dfrac{\pi }{2} \right)}$ , We found out that $\cot \dfrac{\pi }{4}=1$ and $\tan \dfrac{\pi }{4}=1$ . We already know that value of $\cos \dfrac{\pi }{2}=0$; so after putting these values we get the following:
$\begin{align}
& f\left( \dfrac{\pi }{4} \right)=\dfrac{{{\cot }^{3}}\dfrac{\pi }{4}-\tan \dfrac{\pi }{4}}{\cos \left( \dfrac{\pi }{2} \right)}\Rightarrow f\left( \dfrac{\pi }{4} \right)=\dfrac{\left( {{1}^{3}} \right)-\left( 1 \right)}{0} \\
& \Rightarrow f\left( \dfrac{\pi }{4} \right)=\dfrac{0}{0} \\
\end{align}$
Since the limit is of $\dfrac{0}{0}$ form we will use the L’Hospital Rule
The L’Hospital Rule states that if $\phi (x)$ and $\psi (x)$takes the form$\dfrac{0}{0}$ then $\underset{x\to a}{\mathop{\lim }}\,\dfrac{\phi (x)}{\psi (x)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{\phi '(x)}{\psi '(x)}$
We have with us : \[\displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{{{\cot }^{3}}x-\tan x}{\cos \left( x+\dfrac{\pi }{4} \right)}\]
Applying the L’Hospital Rule into the limit below:
\[\begin{align}
& \displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{{{\cot }^{3}}x-\tan x}{\cos \left( x+\dfrac{\pi }{4} \right)}\Rightarrow ~~\displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{\dfrac{d\left( {{\cot }^{3}}x \right)}{dx}-\dfrac{d\left( \tan x \right)}{dx}}{\dfrac{d\left( \cos \left( x+\dfrac{\pi }{4} \right) \right)}{dx}} \\
& \Rightarrow \dfrac{3{{\cot }^{2}}x.\dfrac{d\left( \cot x \right)}{dx}-\dfrac{d\left( \tan x \right)}{dx}}{\dfrac{d\left( \cos \left( x+\dfrac{\pi }{4} \right) \right)}{dx}}.............\text{ Equation 4}\text{.} \\
& \\
\end{align}\]
We will now find out the derivatives of cot x and tan x:
First we will find out the derivative of tan x:
\[\begin{align}
& \dfrac{d\tan }{dx}=\dfrac{d\left( \dfrac{\sin x}{\cos x} \right)}{dx}\Rightarrow \dfrac{\left( \cos x.\dfrac{d\left( \sin x \right)}{dx} \right)-\left( \sin x.\dfrac{d\left( \cos x \right)}{dx} \right)}{{{\cos }^{2}}x} \\
& \Rightarrow \dfrac{\left( \cos \left( x \right).\cos \left( x \right) \right)-\left( \sin \left( x \right).\left( -\sin \left( x \right) \right) \right)}{{{\cos }^{2}}x}=\dfrac{\left( \cos \left( x \right).\cos \left( x \right) \right)+\left( \sin \left( x \right).\sin \left( x \right) \right)}{{{\cos }^{2}}x} \\
& =\dfrac{{{\cos }^{2}}\left( x \right)+{{\sin }^{2}}\left( x \right)}{{{\cos }^{2}}\left( x \right)}=\dfrac{1}{{{\cos }^{2}}x} \\
& \therefore \dfrac{d\left( \tan x \right)}{dx}=\dfrac{1}{{{\cos }^{2}}x} \\
\end{align}\]
Now we will find out the derivative of cot x :
$\begin{align}
& \dfrac{d\left( \cot x \right)}{dx}=\dfrac{d\left( \dfrac{1}{\tan x} \right)}{dx}\Rightarrow \dfrac{\left( \tan x.\dfrac{d\left( 1 \right)}{dx} \right)-\left( 1.\dfrac{d\left( \tan x \right)}{dx} \right)}{{{\tan }^{2}}x} \\
& \Rightarrow \dfrac{0-{{\sec }^{2}}x}{{{\tan }^{2}}x}=\dfrac{-{{\sec }^{2}}x}{{{\tan }^{2}}x}=\dfrac{\left( \dfrac{-1}{{{\cos }^{2}}x} \right)}{\left( \dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x} \right)}=\dfrac{-1}{{{\sin }^{2}}x} \\
& \therefore \dfrac{d\left( \cot x \right)}{dx}=\dfrac{-1}{{{\sin }^{2}}x} \\
\end{align}$
We already know that derivative of $\cos \theta =-\sin \theta $
Therefore, $\dfrac{d\left( \cos \left( x+\dfrac{\pi }{4} \right) \right)}{dx}=-\sin \left( x+\dfrac{\pi }{4} \right)$
Now we will put all the obtained derivatives in equation 4:
\[\begin{align}
& \displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{{{\cot }^{3}}x-\tan x}{\cos \left( x+\dfrac{\pi }{4} \right)}\Rightarrow ~~\displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{\dfrac{d\left( {{\cot }^{3}}x \right)}{dx}-\dfrac{d\left( \tan x \right)}{dx}}{\dfrac{d\left( \cos \left( x+\dfrac{\pi }{4} \right) \right)}{dx}}\Rightarrow \dfrac{3{{\cot }^{2}}x.\dfrac{d\left( \cot x \right)}{dx}-\dfrac{d\left( \tan x \right)}{dx}}{\dfrac{d\left( \cos \left( x+\dfrac{\pi }{4} \right) \right)}{dx}} \\
& \dfrac{3{{\cot }^{2}}x.\dfrac{d\left( \cot x \right)}{dx}-\dfrac{d\left( \tan x \right)}{dx}}{\dfrac{d\left( \cos \left( x+\dfrac{\pi }{4} \right) \right)}{dx}}=\dfrac{3{{\cot }^{2}}x.\left( \dfrac{-1}{{{\sin }^{2}}x} \right)-\dfrac{1}{{{\cos }^{2}}x}}{-\sin \left( x+\dfrac{\pi }{4} \right)} \\
& \\
\end{align}\]
When we simplify the obtained term:\[\begin{align}
& \displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{3{{\cot }^{2}}x.\left( \dfrac{-1}{{{\sin }^{2}}x} \right)-\dfrac{1}{{{\cos }^{2}}x}}{-\sin \left( x+\dfrac{\pi }{4} \right)}=\displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{3\dfrac{{{\cos }^{2}}x}{{{\sin }^{2}}x}.\left( \dfrac{-1}{{{\sin }^{2}}x} \right)-\dfrac{1}{{{\cos }^{2}}x}}{-\sin \left( x+\dfrac{\pi }{4} \right)} \\
& \Rightarrow \displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{\dfrac{-3{{\cos }^{2}}x}{{{\sin }^{4}}x}-\dfrac{1}{{{\cos }^{2}}x}}{-\sin \left( x+\dfrac{\pi }{4} \right)}\Rightarrow \displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{\dfrac{-3{{\cos }^{4}}x-{{\sin }^{4}}x}{{{\sin }^{4}}x{{\cos }^{2}}x}}{-\sin \left( x+\dfrac{\pi }{4} \right)} \\
\end{align}\]
We now have: \[\displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{\dfrac{-3{{\cos }^{4}}x-{{\sin }^{4}}x}{{{\sin }^{4}}x{{\cos }^{2}}x}}{-\sin \left( x+\dfrac{\pi }{4} \right)}\] , As x is approaching $\dfrac{\pi }{4}$ as shown in the function, we will put as x as $\dfrac{\pi }{4}$ to find the limit:
\[\displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{\dfrac{-3{{\cos }^{4}}x-{{\sin }^{4}}x}{{{\sin }^{4}}x{{\cos }^{2}}x}}{-\sin \left( x+\dfrac{\pi }{4} \right)}=\dfrac{\dfrac{-3{{\cos }^{4}}\dfrac{\pi }{4}-{{\sin }^{4}}\dfrac{\pi }{4}}{{{\sin }^{4}}\dfrac{\pi }{4}{{\cos }^{2}}\dfrac{\pi }{4}}}{-\sin \left( \dfrac{\pi }{4}+\dfrac{\pi }{4} \right)}=\dfrac{\dfrac{-3{{\cos }^{4}}\dfrac{\pi }{4}-{{\sin }^{4}}\dfrac{\pi }{4}}{{{\sin }^{4}}\dfrac{\pi }{4}{{\cos }^{2}}\dfrac{\pi }{4}}}{-\sin \left( \dfrac{\pi }{2} \right)}\]
We know that \[\sin \left( \dfrac{\pi }{2} \right)=1\], Therefore \[\dfrac{\dfrac{-3{{\cos }^{4}}\dfrac{\pi }{4}-{{\sin }^{4}}\dfrac{\pi }{4}}{{{\sin }^{4}}\dfrac{\pi }{4}{{\cos }^{2}}\dfrac{\pi }{4}}}{-\sin \left( \dfrac{\pi }{2} \right)}=\dfrac{\dfrac{-3{{\cos }^{4}}\dfrac{\pi }{4}-{{\sin }^{4}}\dfrac{\pi }{4}}{{{\sin }^{4}}\dfrac{\pi }{4}{{\cos }^{2}}\dfrac{\pi }{4}}}{-1}\] ,
Now we know that \[\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\text{ and }\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\] , Putting these values above :
\[\begin{align}
& \dfrac{-3{{\cos }^{4}}\dfrac{\pi }{4}-{{\sin }^{4}}\dfrac{\pi }{4}}{-1.{{\sin }^{4}}\dfrac{\pi }{4}{{\cos }^{2}}\dfrac{\pi }{4}}=\left( \dfrac{-3{{\left( \dfrac{1}{\sqrt{2}} \right)}^{4}}-{{\left( \dfrac{1}{\sqrt{2}} \right)}^{4}}}{-1.{{\left( \dfrac{1}{\sqrt{2}} \right)}^{4}}.{{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}} \right)=\left( \dfrac{-3\left( \dfrac{1}{4} \right)-\left( \dfrac{1}{4} \right)}{-\left( \dfrac{1}{4} \right).\left( \dfrac{1}{2} \right)} \right) \\
& \Rightarrow \left( \dfrac{\left( \dfrac{-3-1}{4} \right)}{-\left( \dfrac{1}{8} \right)} \right)=\left( \dfrac{\left( \dfrac{-4}{4} \right)}{-\left( \dfrac{1}{8} \right)} \right)\Rightarrow \left( \dfrac{-1}{-1}\times 8 \right)\Rightarrow 8 \\
\end{align}\]
Therefore, \[\displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{{{\cot }^{3}}x-\tan x}{\cos \left( x+\dfrac{\pi }{4} \right)}=8\],
So, the correct answer is “Option C”.
Note: The derivative of tanx and cot x is found by first writing them in sin-cos form and then applying the Quotient Rule. Students should be conscious when deriving cot x and tan x, one can make mistakes for applying negative signs. There is no need to derive the derivative of tan x and cot x , students can directly use the standard values.
Before applying the L’Hospital Rule ensure that f(x) is of the form $\dfrac{0}{0};\dfrac{\infty }{\infty }$ then continue differentiation till you get the definite limit. Also keep in mind to differentiate the numerator and denominator separately.
Complete step-by-step answer:
To find the limit of the given function: \[\displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{{{\cot }^{3}}x-\tan x}{\cos \left( x+\dfrac{\pi }{4} \right)}\]
As x is approaching $\dfrac{\pi }{4}$ as shown in the function, we will put as x as $\dfrac{\pi }{4}$ and see the value that comes:
Let’s take $f\left( x \right)=\dfrac{{{\cot }^{3}}x-\tan x}{\cos \left( x+\dfrac{\pi }{4} \right)}$, now when we put x as
$f\left( \dfrac{\pi }{4} \right)=\dfrac{{{\cot }^{3}}\dfrac{\pi }{4}-\tan \dfrac{\pi }{4}}{\cos \left( \dfrac{\pi }{4}+\dfrac{\pi }{4} \right)}\Rightarrow f\left( \dfrac{\pi }{4} \right)=\dfrac{{{\cot }^{3}}\dfrac{\pi }{4}-\tan \dfrac{\pi }{4}}{\cos \left( \dfrac{\pi }{2} \right)}............\text{ Equation 1}\text{.}$
Now, we know that:
$\begin{align}
& \cot \theta =\dfrac{\cos \theta }{\sin \theta }\Rightarrow \cot \dfrac{\pi }{4}=\dfrac{\cos \left( \dfrac{\pi }{4} \right)}{\sin \left( \dfrac{\pi }{4} \right)}\text{ }...........\text{Equation 2}\text{.} \\
& \\
\end{align}$
We already know that the value of $\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$ and $\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$ , so we will putting these values in Equation 2 in order to find value of $\cot \dfrac{\pi }{4}$:
$\cot \dfrac{\pi }{4}=\dfrac{\cos \left( \dfrac{\pi }{4} \right)}{\sin \left( \dfrac{\pi }{4} \right)}\Rightarrow \cot \dfrac{\pi }{4}=\dfrac{\dfrac{1}{\sqrt{2}}}{\dfrac{1}{\sqrt{2}}}$
After cancelling out $\dfrac{1}{\sqrt{2}}$ , we get $\cot \dfrac{\pi }{4}=1$.
Similarly we will find out the value of $\tan \dfrac{\pi }{4}$ :
$\tan \theta =\dfrac{\sin \theta }{\cos \theta }\Rightarrow \tan \dfrac{\pi }{4}=\dfrac{\sin \left( \dfrac{\pi }{4} \right)}{\cos \left( \dfrac{\pi }{4} \right)}\text{ }...........\text{Equation 3}\text{.}$
We already know that the value of $\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$ and $\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}$ , so we will putting these values in Equation 3 in order to find the value of $\tan \dfrac{\pi }{4}$:
$\tan \dfrac{\pi }{4}=\dfrac{\sin \left( \dfrac{\pi }{4} \right)}{\cos \left( \dfrac{\pi }{4} \right)}\Rightarrow \tan \dfrac{\pi }{4}=\dfrac{\dfrac{1}{\sqrt{2}}}{\dfrac{1}{\sqrt{2}}}$
After cancelling out $\dfrac{1}{\sqrt{2}}$ , we get $\tan \dfrac{\pi }{4}=1$.
Putting the values of $\tan \dfrac{\pi }{4}$ and $\cot \dfrac{\pi }{4}$ in Equation 1.
We have: $f\left( \dfrac{\pi }{4} \right)=\dfrac{{{\cot }^{3}}\dfrac{\pi }{4}-\tan \dfrac{\pi }{4}}{\cos \left( \dfrac{\pi }{2} \right)}$ , We found out that $\cot \dfrac{\pi }{4}=1$ and $\tan \dfrac{\pi }{4}=1$ . We already know that value of $\cos \dfrac{\pi }{2}=0$; so after putting these values we get the following:
$\begin{align}
& f\left( \dfrac{\pi }{4} \right)=\dfrac{{{\cot }^{3}}\dfrac{\pi }{4}-\tan \dfrac{\pi }{4}}{\cos \left( \dfrac{\pi }{2} \right)}\Rightarrow f\left( \dfrac{\pi }{4} \right)=\dfrac{\left( {{1}^{3}} \right)-\left( 1 \right)}{0} \\
& \Rightarrow f\left( \dfrac{\pi }{4} \right)=\dfrac{0}{0} \\
\end{align}$
Since the limit is of $\dfrac{0}{0}$ form we will use the L’Hospital Rule
The L’Hospital Rule states that if $\phi (x)$ and $\psi (x)$takes the form$\dfrac{0}{0}$ then $\underset{x\to a}{\mathop{\lim }}\,\dfrac{\phi (x)}{\psi (x)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{\phi '(x)}{\psi '(x)}$
We have with us : \[\displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{{{\cot }^{3}}x-\tan x}{\cos \left( x+\dfrac{\pi }{4} \right)}\]
Applying the L’Hospital Rule into the limit below:
\[\begin{align}
& \displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{{{\cot }^{3}}x-\tan x}{\cos \left( x+\dfrac{\pi }{4} \right)}\Rightarrow ~~\displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{\dfrac{d\left( {{\cot }^{3}}x \right)}{dx}-\dfrac{d\left( \tan x \right)}{dx}}{\dfrac{d\left( \cos \left( x+\dfrac{\pi }{4} \right) \right)}{dx}} \\
& \Rightarrow \dfrac{3{{\cot }^{2}}x.\dfrac{d\left( \cot x \right)}{dx}-\dfrac{d\left( \tan x \right)}{dx}}{\dfrac{d\left( \cos \left( x+\dfrac{\pi }{4} \right) \right)}{dx}}.............\text{ Equation 4}\text{.} \\
& \\
\end{align}\]
We will now find out the derivatives of cot x and tan x:
First we will find out the derivative of tan x:
\[\begin{align}
& \dfrac{d\tan }{dx}=\dfrac{d\left( \dfrac{\sin x}{\cos x} \right)}{dx}\Rightarrow \dfrac{\left( \cos x.\dfrac{d\left( \sin x \right)}{dx} \right)-\left( \sin x.\dfrac{d\left( \cos x \right)}{dx} \right)}{{{\cos }^{2}}x} \\
& \Rightarrow \dfrac{\left( \cos \left( x \right).\cos \left( x \right) \right)-\left( \sin \left( x \right).\left( -\sin \left( x \right) \right) \right)}{{{\cos }^{2}}x}=\dfrac{\left( \cos \left( x \right).\cos \left( x \right) \right)+\left( \sin \left( x \right).\sin \left( x \right) \right)}{{{\cos }^{2}}x} \\
& =\dfrac{{{\cos }^{2}}\left( x \right)+{{\sin }^{2}}\left( x \right)}{{{\cos }^{2}}\left( x \right)}=\dfrac{1}{{{\cos }^{2}}x} \\
& \therefore \dfrac{d\left( \tan x \right)}{dx}=\dfrac{1}{{{\cos }^{2}}x} \\
\end{align}\]
Now we will find out the derivative of cot x :
$\begin{align}
& \dfrac{d\left( \cot x \right)}{dx}=\dfrac{d\left( \dfrac{1}{\tan x} \right)}{dx}\Rightarrow \dfrac{\left( \tan x.\dfrac{d\left( 1 \right)}{dx} \right)-\left( 1.\dfrac{d\left( \tan x \right)}{dx} \right)}{{{\tan }^{2}}x} \\
& \Rightarrow \dfrac{0-{{\sec }^{2}}x}{{{\tan }^{2}}x}=\dfrac{-{{\sec }^{2}}x}{{{\tan }^{2}}x}=\dfrac{\left( \dfrac{-1}{{{\cos }^{2}}x} \right)}{\left( \dfrac{{{\sin }^{2}}x}{{{\cos }^{2}}x} \right)}=\dfrac{-1}{{{\sin }^{2}}x} \\
& \therefore \dfrac{d\left( \cot x \right)}{dx}=\dfrac{-1}{{{\sin }^{2}}x} \\
\end{align}$
We already know that derivative of $\cos \theta =-\sin \theta $
Therefore, $\dfrac{d\left( \cos \left( x+\dfrac{\pi }{4} \right) \right)}{dx}=-\sin \left( x+\dfrac{\pi }{4} \right)$
Now we will put all the obtained derivatives in equation 4:
\[\begin{align}
& \displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{{{\cot }^{3}}x-\tan x}{\cos \left( x+\dfrac{\pi }{4} \right)}\Rightarrow ~~\displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{\dfrac{d\left( {{\cot }^{3}}x \right)}{dx}-\dfrac{d\left( \tan x \right)}{dx}}{\dfrac{d\left( \cos \left( x+\dfrac{\pi }{4} \right) \right)}{dx}}\Rightarrow \dfrac{3{{\cot }^{2}}x.\dfrac{d\left( \cot x \right)}{dx}-\dfrac{d\left( \tan x \right)}{dx}}{\dfrac{d\left( \cos \left( x+\dfrac{\pi }{4} \right) \right)}{dx}} \\
& \dfrac{3{{\cot }^{2}}x.\dfrac{d\left( \cot x \right)}{dx}-\dfrac{d\left( \tan x \right)}{dx}}{\dfrac{d\left( \cos \left( x+\dfrac{\pi }{4} \right) \right)}{dx}}=\dfrac{3{{\cot }^{2}}x.\left( \dfrac{-1}{{{\sin }^{2}}x} \right)-\dfrac{1}{{{\cos }^{2}}x}}{-\sin \left( x+\dfrac{\pi }{4} \right)} \\
& \\
\end{align}\]
When we simplify the obtained term:\[\begin{align}
& \displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{3{{\cot }^{2}}x.\left( \dfrac{-1}{{{\sin }^{2}}x} \right)-\dfrac{1}{{{\cos }^{2}}x}}{-\sin \left( x+\dfrac{\pi }{4} \right)}=\displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{3\dfrac{{{\cos }^{2}}x}{{{\sin }^{2}}x}.\left( \dfrac{-1}{{{\sin }^{2}}x} \right)-\dfrac{1}{{{\cos }^{2}}x}}{-\sin \left( x+\dfrac{\pi }{4} \right)} \\
& \Rightarrow \displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{\dfrac{-3{{\cos }^{2}}x}{{{\sin }^{4}}x}-\dfrac{1}{{{\cos }^{2}}x}}{-\sin \left( x+\dfrac{\pi }{4} \right)}\Rightarrow \displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{\dfrac{-3{{\cos }^{4}}x-{{\sin }^{4}}x}{{{\sin }^{4}}x{{\cos }^{2}}x}}{-\sin \left( x+\dfrac{\pi }{4} \right)} \\
\end{align}\]
We now have: \[\displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{\dfrac{-3{{\cos }^{4}}x-{{\sin }^{4}}x}{{{\sin }^{4}}x{{\cos }^{2}}x}}{-\sin \left( x+\dfrac{\pi }{4} \right)}\] , As x is approaching $\dfrac{\pi }{4}$ as shown in the function, we will put as x as $\dfrac{\pi }{4}$ to find the limit:
\[\displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{\dfrac{-3{{\cos }^{4}}x-{{\sin }^{4}}x}{{{\sin }^{4}}x{{\cos }^{2}}x}}{-\sin \left( x+\dfrac{\pi }{4} \right)}=\dfrac{\dfrac{-3{{\cos }^{4}}\dfrac{\pi }{4}-{{\sin }^{4}}\dfrac{\pi }{4}}{{{\sin }^{4}}\dfrac{\pi }{4}{{\cos }^{2}}\dfrac{\pi }{4}}}{-\sin \left( \dfrac{\pi }{4}+\dfrac{\pi }{4} \right)}=\dfrac{\dfrac{-3{{\cos }^{4}}\dfrac{\pi }{4}-{{\sin }^{4}}\dfrac{\pi }{4}}{{{\sin }^{4}}\dfrac{\pi }{4}{{\cos }^{2}}\dfrac{\pi }{4}}}{-\sin \left( \dfrac{\pi }{2} \right)}\]
We know that \[\sin \left( \dfrac{\pi }{2} \right)=1\], Therefore \[\dfrac{\dfrac{-3{{\cos }^{4}}\dfrac{\pi }{4}-{{\sin }^{4}}\dfrac{\pi }{4}}{{{\sin }^{4}}\dfrac{\pi }{4}{{\cos }^{2}}\dfrac{\pi }{4}}}{-\sin \left( \dfrac{\pi }{2} \right)}=\dfrac{\dfrac{-3{{\cos }^{4}}\dfrac{\pi }{4}-{{\sin }^{4}}\dfrac{\pi }{4}}{{{\sin }^{4}}\dfrac{\pi }{4}{{\cos }^{2}}\dfrac{\pi }{4}}}{-1}\] ,
Now we know that \[\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\text{ and }\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}\] , Putting these values above :
\[\begin{align}
& \dfrac{-3{{\cos }^{4}}\dfrac{\pi }{4}-{{\sin }^{4}}\dfrac{\pi }{4}}{-1.{{\sin }^{4}}\dfrac{\pi }{4}{{\cos }^{2}}\dfrac{\pi }{4}}=\left( \dfrac{-3{{\left( \dfrac{1}{\sqrt{2}} \right)}^{4}}-{{\left( \dfrac{1}{\sqrt{2}} \right)}^{4}}}{-1.{{\left( \dfrac{1}{\sqrt{2}} \right)}^{4}}.{{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}} \right)=\left( \dfrac{-3\left( \dfrac{1}{4} \right)-\left( \dfrac{1}{4} \right)}{-\left( \dfrac{1}{4} \right).\left( \dfrac{1}{2} \right)} \right) \\
& \Rightarrow \left( \dfrac{\left( \dfrac{-3-1}{4} \right)}{-\left( \dfrac{1}{8} \right)} \right)=\left( \dfrac{\left( \dfrac{-4}{4} \right)}{-\left( \dfrac{1}{8} \right)} \right)\Rightarrow \left( \dfrac{-1}{-1}\times 8 \right)\Rightarrow 8 \\
\end{align}\]
Therefore, \[\displaystyle \lim_{x \to \dfrac{\pi }{4}}\dfrac{{{\cot }^{3}}x-\tan x}{\cos \left( x+\dfrac{\pi }{4} \right)}=8\],
So, the correct answer is “Option C”.
Note: The derivative of tanx and cot x is found by first writing them in sin-cos form and then applying the Quotient Rule. Students should be conscious when deriving cot x and tan x, one can make mistakes for applying negative signs. There is no need to derive the derivative of tan x and cot x , students can directly use the standard values.
Before applying the L’Hospital Rule ensure that f(x) is of the form $\dfrac{0}{0};\dfrac{\infty }{\infty }$ then continue differentiation till you get the definite limit. Also keep in mind to differentiate the numerator and denominator separately.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

