
Calculate the equilibrium constant at \[25degrees{\text{ }}Celsius\] given the Standard Free Energy value of \[ - {\text{ }}107.2{\text{ }}kJ.\]
A) \[ - {\text{ }}43.2\]
B) \[43.2\]
C) \[6.18 \times {10^8}\]
D) \[1.04\]
E) \[6.18 \times {10^9}\]
Answer
553.8k+ views
Hint: Standard free energy change of the reaction \[ = {\text{ }}\Delta G^\circ \] (which is equal to the difference in the free energies of formation of the products and reactants both in their standard states) according to the equation.
At equilibrium,
\[\Delta G^\circ = -{\text{ }}RT{\text{ }}In{\text{ }}K\left( {eq} \right)\]
\[R = 8.314{\text{ }}Jmo{l^{ - 1{\text{ }}}}{K^{ - 1}}{\text{ }}or{\text{ }}0.008314{\text{ }}kJ{\text{ }}mo{l^{ - 1}}{\text{ }}{K^{ - 1.}}\]
\[T\] =temperature on the Kelvin scale
\[\;K\] =equilibrium constant
Complete Step by step answer: Gibbs free energy is a quantity that is used to measure the maximum amount of work done in a thermodynamic system when the temperature and pressure are kept constant. Its value is usually expressed in Joules or Kilojoules. Gibbs free energy can be defined as the maximum amount of work that can be extracted from a closed system.
Gibbs free energy is a state function, So change in Gibbs free energy is \[\Delta G = \Delta H - \Delta \left( {TS} \right)\;\;\;\;\;\;\;\]
\[\;\Delta H\]= enthalpy change, T = temperature ΔS = entropy change.
Under standard conditions, the Gibbs free energy is expressed as a - \[\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ \]
\[ \Delta G^\circ = \] Standard free energy change of the reaction,
The standard free energy of a substance represents the free energy change associated with the formation of the substance from the elements in their most stable forms as they exist under standard conditions.
The standard Gibbs free energy of all elements in their standard state is zero.
\[\Delta G = \Delta G^\circ + RT{\text{ }}InQ\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\]
Where \[Q\] is the reaction quotient.
At equilibrium,
\[\Delta G = 0{\text{ }}and{\text{ }}Q\] Become equal to the equilibrium constant. Hence the equation becomes,
\[\Rightarrow \Delta G^\circ = -{\text{ }}RT{\text{ }}In{\text{ }}K\left( {eq} \right)\]
As per question to calculate value of \[K\](equilibrium constant) by putting value in above equation,
Given,
\[T = 25\;degrees{\text{ }}Celsius{\text{ }} = 298{\text{ }}K\]
\[\Delta G^\circ \] = - 107.2 kJ = =−107200J
\[\Rightarrow \Delta G^\circ = - RT{\text{ }}ln{\text{ }}K\]
\[\Rightarrow ln{\text{ }}K\left( {eq} \right) = - \dfrac{{\Delta G^\circ }}{{RT\;}}\]
\[\Rightarrow K\left( {eq} \right) = {e^{\dfrac{{ - \Delta G}}{{RT}}}}\] =\[{e^{\dfrac{{ - ( - 107200J)}}{{8.314\;J/K \cdot mol\left( {298\;K} \right)}}}}\] = \[{e^{43.268}}\]
\[\Rightarrow K = 6.18 \times {10^8}.\]
So the option \[\left( C \right)\] is correct.
Note: In a reversible reaction, the free energy of the reaction mixture is lower than the free energy of reactants as well as products. Hence, free energy decreases whether we start from reactants or products i.e., \[\Delta G\] is \[ - ve\] in backward as well as forward reactions.
At equilibrium,
\[\Delta G^\circ = -{\text{ }}RT{\text{ }}In{\text{ }}K\left( {eq} \right)\]
\[R = 8.314{\text{ }}Jmo{l^{ - 1{\text{ }}}}{K^{ - 1}}{\text{ }}or{\text{ }}0.008314{\text{ }}kJ{\text{ }}mo{l^{ - 1}}{\text{ }}{K^{ - 1.}}\]
\[T\] =temperature on the Kelvin scale
\[\;K\] =equilibrium constant
Complete Step by step answer: Gibbs free energy is a quantity that is used to measure the maximum amount of work done in a thermodynamic system when the temperature and pressure are kept constant. Its value is usually expressed in Joules or Kilojoules. Gibbs free energy can be defined as the maximum amount of work that can be extracted from a closed system.
Gibbs free energy is a state function, So change in Gibbs free energy is \[\Delta G = \Delta H - \Delta \left( {TS} \right)\;\;\;\;\;\;\;\]
\[\;\Delta H\]= enthalpy change, T = temperature ΔS = entropy change.
Under standard conditions, the Gibbs free energy is expressed as a - \[\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ \]
\[ \Delta G^\circ = \] Standard free energy change of the reaction,
The standard free energy of a substance represents the free energy change associated with the formation of the substance from the elements in their most stable forms as they exist under standard conditions.
The standard Gibbs free energy of all elements in their standard state is zero.
\[\Delta G = \Delta G^\circ + RT{\text{ }}InQ\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\]
Where \[Q\] is the reaction quotient.
At equilibrium,
\[\Delta G = 0{\text{ }}and{\text{ }}Q\] Become equal to the equilibrium constant. Hence the equation becomes,
\[\Rightarrow \Delta G^\circ = -{\text{ }}RT{\text{ }}In{\text{ }}K\left( {eq} \right)\]
As per question to calculate value of \[K\](equilibrium constant) by putting value in above equation,
Given,
\[T = 25\;degrees{\text{ }}Celsius{\text{ }} = 298{\text{ }}K\]
\[\Delta G^\circ \] = - 107.2 kJ = =−107200J
\[\Rightarrow \Delta G^\circ = - RT{\text{ }}ln{\text{ }}K\]
\[\Rightarrow ln{\text{ }}K\left( {eq} \right) = - \dfrac{{\Delta G^\circ }}{{RT\;}}\]
\[\Rightarrow K\left( {eq} \right) = {e^{\dfrac{{ - \Delta G}}{{RT}}}}\] =\[{e^{\dfrac{{ - ( - 107200J)}}{{8.314\;J/K \cdot mol\left( {298\;K} \right)}}}}\] = \[{e^{43.268}}\]
\[\Rightarrow K = 6.18 \times {10^8}.\]
So the option \[\left( C \right)\] is correct.
Note: In a reversible reaction, the free energy of the reaction mixture is lower than the free energy of reactants as well as products. Hence, free energy decreases whether we start from reactants or products i.e., \[\Delta G\] is \[ - ve\] in backward as well as forward reactions.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

