
Calculate the degree of hydrolysis and pH of $0.02{\text{ M}}$ ammonium cyanide $\left( {{\text{N}}{{\text{H}}_{\text{4}}}{\text{CN}}} \right)$ at $298{\text{ K}}$. $\left[ {{{\text{K}}_1}{\text{ of HCN}} = 4.99 \times {{10}^{ - 9}},{\text{ }}{{\text{K}}_{\text{b}}}{\text{ for N}}{{\text{H}}_4}{\text{OH}} = 1.77 \times {{10}^{ - 5}}} \right]$.
A) ${\text{8}}{\text{.2}}$
B) ${\text{3}}{\text{.2}}$
C) ${\text{9}}{\text{.3}}$
D) ${\text{3}}{\text{.9}}$
Answer
570k+ views
Hint: The negative logarithm of the ${{\text{H}}^ + }$ ion concentration in the solution is known as the pH of the solution. Calculate the pH using the Henderson-Hasselbalch equation.
Formulae Used: ${{\text{K}}_{\text{h}}} = \dfrac{{{{\text{K}}_{\text{w}}}}}{{{{\text{K}}_{\text{a}}} \times {{\text{K}}_{\text{b}}}}}$
${\text{p}}{{\text{K}}_{\text{a}}} = {\text{pH}} + \log \dfrac{{\left[ {{\text{HA}}} \right]}}{{\left[ {{{\text{A}}^ - }} \right]}}$
Complete step by step answer:
Ammonium cyanide $\left( {{\text{N}}{{\text{H}}_{\text{4}}}{\text{CN}}} \right)$ is a salt of strong base ammonium hydroxide $\left( {{\text{N}}{{\text{H}}_{\text{4}}}{\text{OH}}} \right)$ and weak acid hydrogen cyanide $\left( {{\text{HCN}}} \right)$.
Calculate the hydrolysis constant for ammonium cyanide using the equation as follows:
${{\text{K}}_{\text{h}}} = \dfrac{{{{\text{K}}_{\text{w}}}}}{{{{\text{K}}_{\text{a}}} \times {{\text{K}}_{\text{b}}}}}$
Where ${{\text{K}}_{\text{h}}}$ is the hydrolysis constant,
${{\text{K}}_{\text{w}}}$ is the ionization constant of water,
${{\text{K}}_{\text{a}}}$ is the acid dissociation constant,
${{\text{K}}_{\text{b}}}$ is the base dissociation constant.
Substitute ${10^{ - 14}}$ for the ionization constant of water, $4.99 \times {10^{ - 9}}$ for the acid dissociation constant, $1.77 \times {10^{ - 5}}$ for the base dissociation constant. Thus,
${{\text{K}}_{\text{h}}} = \dfrac{{{{10}^{ - 14}}}}{{4.99 \times {{10}^{ - 9}} \times 1.77 \times {{10}^{ - 5}}}}$
${{\text{K}}_{\text{h}}} = {\text{1}}{\text{.132}}$
Thus, the hydrolysis constant for ammonium cyanide is ${\text{1}}{\text{.132}}$.
Calculate the degree of hydrolysis for ammonium cyanide using the equation as follows:
${\text{h}} = \dfrac{{\sqrt {{{\text{K}}_{\text{h}}}} }}{{1 + \sqrt {{{\text{K}}_{\text{h}}}} }}$
Where ${\text{h}}$ is the degree of hydrolysis.
Thus,
${\text{h}} = \dfrac{{\sqrt {{\text{1}}{\text{.132}}} }}{{1 + \sqrt {{\text{1}}{\text{.132}}} }}$
${\text{h}} = {\text{0}}{\text{.51}}$
Thus, the degree of hydrolysis for ammonium cyanide is ${\text{0}}{\text{.51}}$.
Calculate the pH for ammonium cyanide using the Henderson-Hasselbalch equation as follows:
${\text{p}}{{\text{K}}_{\text{a}}} = {\text{pH}} + \log \dfrac{{\left[ {{\text{HA}}} \right]}}{{\left[ {{{\text{A}}^ - }} \right]}}$
Thus,
${\text{pH}} = {\text{p}}{{\text{K}}_{\text{a}}} - \log \dfrac{{\left[ {{\text{HA}}} \right]}}{{\left[ {{{\text{A}}^ - }} \right]}}$
${\text{pH}} = {\text{log}}\left( {{{\text{K}}_{\text{a}}}} \right) - \log \dfrac{{\left[ {\text{h}} \right]}}{{\left[ {{\text{1}} - {\text{h}}} \right]}}$
Thus,
${\text{pH}} = {\text{log}}\left( {4.99 \times {{10}^{ - 9}}} \right) - \log \dfrac{{\left( {{\text{0}}{\text{.51}}} \right)}}{{\left( {1 - {\text{0}}{\text{.51}}} \right)}}$
${\text{pH}} = {\text{9}}{\text{.3}}$
Thus, the pH for ammonium cyanide is ${\text{9}}{\text{.3}}$.
Thus, the degree of hydrolysis for ammonium cyanide is ${\text{0}}{\text{.51}}$ and the pH for ammonium cyanide is ${\text{9}}{\text{.3}}$.
Thus, the correct option is (C) ${\text{9}}{\text{.3}}$.
Note: The fraction or percentage of a salt which is hydrolysed at equilibrium is known as the degree of hydrolysis. The Henderson-Hasselbalch equation describes the relationship between the pH and pOH of a solution and the ${\text{p}}{{\text{K}}_{\text{a}}}$ or ${\text{p}}{{\text{K}}_{\text{b}}}$ and the ratio of the concentration of the chemical species that has been dissociated. If the acid dissociation constant is known we can use the Henderson-Hasselbalch equation.
Formulae Used: ${{\text{K}}_{\text{h}}} = \dfrac{{{{\text{K}}_{\text{w}}}}}{{{{\text{K}}_{\text{a}}} \times {{\text{K}}_{\text{b}}}}}$
${\text{p}}{{\text{K}}_{\text{a}}} = {\text{pH}} + \log \dfrac{{\left[ {{\text{HA}}} \right]}}{{\left[ {{{\text{A}}^ - }} \right]}}$
Complete step by step answer:
Ammonium cyanide $\left( {{\text{N}}{{\text{H}}_{\text{4}}}{\text{CN}}} \right)$ is a salt of strong base ammonium hydroxide $\left( {{\text{N}}{{\text{H}}_{\text{4}}}{\text{OH}}} \right)$ and weak acid hydrogen cyanide $\left( {{\text{HCN}}} \right)$.
Calculate the hydrolysis constant for ammonium cyanide using the equation as follows:
${{\text{K}}_{\text{h}}} = \dfrac{{{{\text{K}}_{\text{w}}}}}{{{{\text{K}}_{\text{a}}} \times {{\text{K}}_{\text{b}}}}}$
Where ${{\text{K}}_{\text{h}}}$ is the hydrolysis constant,
${{\text{K}}_{\text{w}}}$ is the ionization constant of water,
${{\text{K}}_{\text{a}}}$ is the acid dissociation constant,
${{\text{K}}_{\text{b}}}$ is the base dissociation constant.
Substitute ${10^{ - 14}}$ for the ionization constant of water, $4.99 \times {10^{ - 9}}$ for the acid dissociation constant, $1.77 \times {10^{ - 5}}$ for the base dissociation constant. Thus,
${{\text{K}}_{\text{h}}} = \dfrac{{{{10}^{ - 14}}}}{{4.99 \times {{10}^{ - 9}} \times 1.77 \times {{10}^{ - 5}}}}$
${{\text{K}}_{\text{h}}} = {\text{1}}{\text{.132}}$
Thus, the hydrolysis constant for ammonium cyanide is ${\text{1}}{\text{.132}}$.
Calculate the degree of hydrolysis for ammonium cyanide using the equation as follows:
${\text{h}} = \dfrac{{\sqrt {{{\text{K}}_{\text{h}}}} }}{{1 + \sqrt {{{\text{K}}_{\text{h}}}} }}$
Where ${\text{h}}$ is the degree of hydrolysis.
Thus,
${\text{h}} = \dfrac{{\sqrt {{\text{1}}{\text{.132}}} }}{{1 + \sqrt {{\text{1}}{\text{.132}}} }}$
${\text{h}} = {\text{0}}{\text{.51}}$
Thus, the degree of hydrolysis for ammonium cyanide is ${\text{0}}{\text{.51}}$.
Calculate the pH for ammonium cyanide using the Henderson-Hasselbalch equation as follows:
${\text{p}}{{\text{K}}_{\text{a}}} = {\text{pH}} + \log \dfrac{{\left[ {{\text{HA}}} \right]}}{{\left[ {{{\text{A}}^ - }} \right]}}$
Thus,
${\text{pH}} = {\text{p}}{{\text{K}}_{\text{a}}} - \log \dfrac{{\left[ {{\text{HA}}} \right]}}{{\left[ {{{\text{A}}^ - }} \right]}}$
${\text{pH}} = {\text{log}}\left( {{{\text{K}}_{\text{a}}}} \right) - \log \dfrac{{\left[ {\text{h}} \right]}}{{\left[ {{\text{1}} - {\text{h}}} \right]}}$
Thus,
${\text{pH}} = {\text{log}}\left( {4.99 \times {{10}^{ - 9}}} \right) - \log \dfrac{{\left( {{\text{0}}{\text{.51}}} \right)}}{{\left( {1 - {\text{0}}{\text{.51}}} \right)}}$
${\text{pH}} = {\text{9}}{\text{.3}}$
Thus, the pH for ammonium cyanide is ${\text{9}}{\text{.3}}$.
Thus, the degree of hydrolysis for ammonium cyanide is ${\text{0}}{\text{.51}}$ and the pH for ammonium cyanide is ${\text{9}}{\text{.3}}$.
Thus, the correct option is (C) ${\text{9}}{\text{.3}}$.
Note: The fraction or percentage of a salt which is hydrolysed at equilibrium is known as the degree of hydrolysis. The Henderson-Hasselbalch equation describes the relationship between the pH and pOH of a solution and the ${\text{p}}{{\text{K}}_{\text{a}}}$ or ${\text{p}}{{\text{K}}_{\text{b}}}$ and the ratio of the concentration of the chemical species that has been dissociated. If the acid dissociation constant is known we can use the Henderson-Hasselbalch equation.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

