
Calculate the bond order of $\text{ O}_{\text{2}}^{\text{+}}\text{ }$.
Answer
565.8k+ views
Hint: First draw a molecular orbital diagram (MOT) where the atomic orbitals combine to form molecular orbitals. The total electrons associated with the molecules are filled in the MOT diagram.
To solve this question, we need to write the molecular orbital configuration. To find out the bond order from the molecular orbital configuration is:
$\text{Bond order =}\dfrac{\text{1}}{\text{2}}\left[ \text{Bonding electrons -antibonding electrons} \right]$
Complete answer:
The atomic orbitals of the oxygen and one electron less oxygen atom$\text{ }{{\text{O}}^{\text{+}}}\text{ }$ combine to form the molecular orbitals of $\text{ O}_{\text{2}}^{\text{+}}\text{ }$the molecule. the electronic configuration of oxygen and $\text{ }{{\text{O}}^{\text{+}}}\text{ }$can be written as follows,
Electronic configuration of O :
${{\text{ }}_{8}}\text{O = 1}{{\text{s}}^{\text{2}}}\text{ , 2}{{\text{s}}^{\text{2}}}\text{ , 2p}_{x}^{2}=\text{2p}_{y}^{1}=\text{2p}_{z}^{1}\text{ }$
The oxygen loses one electron and forms$\text{ }{{\text{O}}^{\text{+}}}\text{ }$. Thus, Electronic configuration of $\text{ }{{\text{O}}^{\text{+}}}\text{ }$is,
${{\text{ }}_{7}}{{\text{O}}^{\text{+}}}\text{ = 1}{{\text{s}}^{\text{2}}}\text{ , 2}{{\text{s}}^{\text{2}}}\text{ , 2p}_{x}^{1}=\text{2p}_{y}^{1}=\text{2p}_{z}^{1}\text{ }$
Thus, 8 electrons from the O atom and 7 electrons from the $\text{ }{{\text{O}}^{\text{+}}}\text{ }$are needed to fill in the molecular orbitals. Therefore, the MOT diagram $\text{O}_{\text{2}}^{\text{+}}$ contains the 15 electrons (8 electrons of O + 7 electrons of $\text{ }{{\text{O}}^{\text{+}}}\text{ }$).
The MOT diagram for the $\text{O}_{\text{2}}^{\text{+}}$ molecule is as shown below,
Therefore, the molecular orbital configuration of $\text{O}_{\text{2}}^{\text{+}}$ is as follows:$\text{O}_{\text{2}}^{\text{+}}$
$\text{ }\!\!\sigma\!\!\text{ 1}{{\text{s}}^{\text{2}}}\text{,}{{\text{ }\!\!\sigma\!\!\text{ }}^{\text{*}}}\text{1}{{\text{s}}^{\text{2}}}\text{, }\!\!\sigma\!\!\text{ 2}{{\text{s}}^{\text{2}}}\text{, }{{\text{ }\!\!\sigma\!\!\text{ }}^{\text{*}}}\text{2}{{\text{s}}^{\text{2}}}\text{, }\!\!\sigma\!\!\text{ 2}{{\text{p}}^{\text{2}}}_{z}\text{, 2p}_{\text{x}}^{\text{2}}\text{ }\!\!\pi\!\!\text{ = 2p}_{\text{y}}^{\text{2}}\text{ }\!\!\pi\!\!\text{ , 2p}_{\text{x}}^{\text{2}}{{\text{ }\!\!\pi\!\!\text{ }}^{\text{*}}}\text{=2p}_{\text{y}}^{0}{{\text{ }\!\!\pi\!\!\text{ }}^{\text{*}}}$
There are 10 bonding (including molecular orbitals formed by the $\text{1s}$ orbitals) and 5 electrons in the antibonding molecular orbitals. The number of bonding and antibonding electrons can be determined by simply calculating the electrons in the orbital.
We know that the bond order of a molecule depends on the total number of electrons in bonding and antibonding MO. The bonding electrons stabilize the molecule while antibonding electrons contribute towards the destabilization of the molecule. Therefore bond order is written as,
$\text{Bond order =}\dfrac{\text{1}}{\text{2}}\left[ \text{Bonding-antibonding} \right]\text{ }$
Substitute the number of electrons. We have,
$\text{Bond order }=\dfrac{1}{2}\text{ }\left[ 10-5 \right]=2.5$
Therefore, the bond order of $\text{O}_{\text{2}}^{\text{+}}$ is $2.5$.
Note:
Note that, 2.5. Bond order may look confusing. The two oxygen atoms have two complete bonds and one partial bond thus it is 2.5.
Bond order is indirectly proportional to the length of the bond. The higher the bond order, the shorter and stronger will be the bond. The addition of each electron in the antibonding molecular orbital will decrease the bond order.
To solve this question, we need to write the molecular orbital configuration. To find out the bond order from the molecular orbital configuration is:
$\text{Bond order =}\dfrac{\text{1}}{\text{2}}\left[ \text{Bonding electrons -antibonding electrons} \right]$
Complete answer:
The atomic orbitals of the oxygen and one electron less oxygen atom$\text{ }{{\text{O}}^{\text{+}}}\text{ }$ combine to form the molecular orbitals of $\text{ O}_{\text{2}}^{\text{+}}\text{ }$the molecule. the electronic configuration of oxygen and $\text{ }{{\text{O}}^{\text{+}}}\text{ }$can be written as follows,
Electronic configuration of O :
${{\text{ }}_{8}}\text{O = 1}{{\text{s}}^{\text{2}}}\text{ , 2}{{\text{s}}^{\text{2}}}\text{ , 2p}_{x}^{2}=\text{2p}_{y}^{1}=\text{2p}_{z}^{1}\text{ }$
The oxygen loses one electron and forms$\text{ }{{\text{O}}^{\text{+}}}\text{ }$. Thus, Electronic configuration of $\text{ }{{\text{O}}^{\text{+}}}\text{ }$is,
${{\text{ }}_{7}}{{\text{O}}^{\text{+}}}\text{ = 1}{{\text{s}}^{\text{2}}}\text{ , 2}{{\text{s}}^{\text{2}}}\text{ , 2p}_{x}^{1}=\text{2p}_{y}^{1}=\text{2p}_{z}^{1}\text{ }$
Thus, 8 electrons from the O atom and 7 electrons from the $\text{ }{{\text{O}}^{\text{+}}}\text{ }$are needed to fill in the molecular orbitals. Therefore, the MOT diagram $\text{O}_{\text{2}}^{\text{+}}$ contains the 15 electrons (8 electrons of O + 7 electrons of $\text{ }{{\text{O}}^{\text{+}}}\text{ }$).
The MOT diagram for the $\text{O}_{\text{2}}^{\text{+}}$ molecule is as shown below,
Therefore, the molecular orbital configuration of $\text{O}_{\text{2}}^{\text{+}}$ is as follows:$\text{O}_{\text{2}}^{\text{+}}$
$\text{ }\!\!\sigma\!\!\text{ 1}{{\text{s}}^{\text{2}}}\text{,}{{\text{ }\!\!\sigma\!\!\text{ }}^{\text{*}}}\text{1}{{\text{s}}^{\text{2}}}\text{, }\!\!\sigma\!\!\text{ 2}{{\text{s}}^{\text{2}}}\text{, }{{\text{ }\!\!\sigma\!\!\text{ }}^{\text{*}}}\text{2}{{\text{s}}^{\text{2}}}\text{, }\!\!\sigma\!\!\text{ 2}{{\text{p}}^{\text{2}}}_{z}\text{, 2p}_{\text{x}}^{\text{2}}\text{ }\!\!\pi\!\!\text{ = 2p}_{\text{y}}^{\text{2}}\text{ }\!\!\pi\!\!\text{ , 2p}_{\text{x}}^{\text{2}}{{\text{ }\!\!\pi\!\!\text{ }}^{\text{*}}}\text{=2p}_{\text{y}}^{0}{{\text{ }\!\!\pi\!\!\text{ }}^{\text{*}}}$
There are 10 bonding (including molecular orbitals formed by the $\text{1s}$ orbitals) and 5 electrons in the antibonding molecular orbitals. The number of bonding and antibonding electrons can be determined by simply calculating the electrons in the orbital.
We know that the bond order of a molecule depends on the total number of electrons in bonding and antibonding MO. The bonding electrons stabilize the molecule while antibonding electrons contribute towards the destabilization of the molecule. Therefore bond order is written as,
$\text{Bond order =}\dfrac{\text{1}}{\text{2}}\left[ \text{Bonding-antibonding} \right]\text{ }$
Substitute the number of electrons. We have,
$\text{Bond order }=\dfrac{1}{2}\text{ }\left[ 10-5 \right]=2.5$
Therefore, the bond order of $\text{O}_{\text{2}}^{\text{+}}$ is $2.5$.
Note:
Note that, 2.5. Bond order may look confusing. The two oxygen atoms have two complete bonds and one partial bond thus it is 2.5.
Bond order is indirectly proportional to the length of the bond. The higher the bond order, the shorter and stronger will be the bond. The addition of each electron in the antibonding molecular orbital will decrease the bond order.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

