
Calculate the area of the parallelogram formed by the lines \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0,\text{ }{{a}_{1}}x+{{b}_{1}}y+{{d}_{1}}=0,\text{ }{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{d}_{2}}=0\] .
\[\begin{align}
& \left( \text{a} \right)\text{ }\dfrac{\left( {{d}_{1}}-{{c}_{1}} \right)\left( {{d}_{2}}-{{c}_{2}} \right)}{{{\left[ \left( {{a}_{1}}^{2}+{{b}_{1}}^{2} \right)\left( {{a}_{2}}^{2}+{{b}_{2}}^{2} \right) \right]}^{\dfrac{1}{2}}}} \\
& \left( b \right)\text{ }\dfrac{\left( {{d}_{1}}-{{c}_{1}} \right)\left( {{d}_{2}}-{{c}_{2}} \right)}{{{a}_{1}}{{a}_{2}}-{{b}_{1}}{{b}_{2}}} \\
& \left( c \right)\text{ }\dfrac{\left( {{d}_{1}}+{{c}_{1}} \right)\left( {{d}_{2}}+{{c}_{2}} \right)}{{{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}}} \\
& \left( d \right)\text{ }\dfrac{\left( {{d}_{1}}-{{c}_{1}} \right)\left( {{d}_{2}}-{{c}_{2}} \right)}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}} \\
\end{align}\]
Answer
592.8k+ views
- Hint: The basic formula we use is the area of the parallelogram that is
Area = base × height.
We can find the height by calculating the distance between parallel lines. Then we will find the points of intersection between a pair of parallel lines and a non-parallel line. By that we will get two points. The distance between them is the length of the base. We will multiply these two and get the answer.
Complete step-by-step solution -
Let us begin with the solution.
First, let us calculate the distance between the parallel line pair \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0\] and\[{{a}_{1}}x+{{b}_{1}}y+{{d}_{1}}=0\].
Distance between parallel lines is given by the formula,
\[=\dfrac{|{{d}_{1}}-{{c}_{1}}|}{\sqrt{{{a}_{1}}^{2}+{{b}_{1}}^{2}}}\]
Therefore height between two parallel lines will be,
\[=\dfrac{|{{d}_{1}}-{{c}_{1}}|}{\sqrt{{{a}_{1}}^{2}+{{b}_{1}}^{2}}}\]
Now we need to find the intersection points between the pair of lines \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{d}_{2}}=0\] and the line \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0\] .
Let us start with \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0\] and \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0\] .
\[\begin{align}
& {{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0..........\times {{a}_{1}} \\
& {{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0..........\times {{a}_{2}} \\
\end{align}\]
\[\begin{align}
& {{a}_{1}}{{a}_{2}}x+{{a}_{1}}{{b}_{2}}y+{{a}_{1}}{{c}_{2}}=0 \\
& {{a}_{2}}{{a}_{1}}x+{{a}_{2}}{{b}_{1}}y+{{a}_{2}}{{c}_{1}}=0 \\
\end{align}\]
Now subtracting and cancelling the like terms, we get,
\[\begin{align}
& {{a}_{1}}{{b}_{2}}y-{{a}_{2}}{{b}_{1}}y+{{a}_{1}}{{c}_{2}}-{{a}_{2}}{{c}_{1}}=0 \\
& y({{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}})={{a}_{2}}{{c}_{1}}-{{a}_{1}}{{c}_{2}} \\
& y=\dfrac{{{a}_{2}}{{c}_{1}}-{{a}_{1}}{{c}_{2}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}} \\
\end{align}\]
Now,
\[\begin{align}
& {{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0..........\times {{b}_{1}} \\
& {{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0..........\times {{b}_{2}} \\
\end{align}\]
\[\begin{align}
& {{b}_{1}}{{a}_{2}}x+{{b}_{1}}{{b}_{2}}y+{{b}_{1}}{{c}_{2}}=0 \\
& {{b}_{2}}{{a}_{1}}x+{{b}_{2}}{{b}_{1}}y+{{b}_{2}}{{c}_{1}}=0 \\
\end{align}\]
Subtracting and cancelling the like terms, we get,
\[\begin{align}
& {{a}_{2}}{{b}_{1}}x-{{b}_{2}}{{a}_{1}}x+{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}=0 \\
& x({{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}})={{b}_{2}}{{c}_{1}}-{{b}_{1}}{{c}_{2}} \\
& x=\dfrac{{{b}_{2}}{{c}_{1}}-{{b}_{1}}{{c}_{2}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}} \\
\end{align}\]
Therefore, intersection point of \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0\] and \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0\] is \[\left( \dfrac{{{b}_{2}}{{c}_{1}}-{{b}_{1}}{{c}_{2}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}},\dfrac{{{a}_{2}}{{c}_{1}}-{{a}_{1}}{{c}_{2}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}} \right)\].
Let us start with \[{{a}_{2}}x+{{b}_{2}}y+{{d}_{2}}=0\] and \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0\].
\[\begin{align}
& {{a}_{2}}x+{{b}_{2}}y+{{d}_{2}}=0..........\times {{a}_{1}} \\
& {{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0..........\times {{a}_{2}} \\
\end{align}\]
\[\begin{align}
& {{a}_{1}}{{a}_{2}}x+{{a}_{1}}{{b}_{2}}y+{{a}_{1}}{{d}_{2}}=0 \\
& {{a}_{2}}{{a}_{1}}x+{{a}_{2}}{{b}_{1}}y+{{a}_{2}}{{c}_{1}}=0 \\
\end{align}\]
Now subtracting and cancelling the like terms, we get,
\[\begin{align}
& {{a}_{1}}{{b}_{2}}y-{{a}_{2}}{{b}_{1}}y+{{a}_{1}}{{d}_{2}}-{{a}_{2}}{{c}_{1}}=0 \\
& y({{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}})={{a}_{2}}{{c}_{1}}-{{a}_{1}}{{d}_{2}} \\
& y=\dfrac{{{a}_{2}}{{c}_{1}}-{{a}_{1}}{{d}_{2}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}} \\
\end{align}\]
Now,
\[\begin{align}
& {{a}_{2}}x+{{b}_{2}}y+{{d}_{2}}=0..........\times {{b}_{1}} \\
& {{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0..........\times {{b}_{2}} \\
\end{align}\]
\[\begin{align}
& {{b}_{1}}{{a}_{2}}x+{{b}_{1}}{{b}_{2}}y+{{b}_{1}}{{d}_{2}}=0 \\
& {{b}_{2}}{{a}_{1}}x+{{b}_{2}}{{b}_{1}}y+{{b}_{2}}{{c}_{1}}=0 \\
\end{align}\]
Subtracting and cancelling the like terms, we get,
\[\begin{align}
& {{a}_{2}}{{b}_{1}}x-{{b}_{2}}{{a}_{1}}x+{{b}_{1}}{{d}_{2}}-{{b}_{2}}{{c}_{1}}=0 \\
& x({{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}})={{d}_{2}}{{c}_{1}}-{{b}_{1}}{{c}_{2}} \\
& x=\dfrac{{{b}_{2}}{{c}_{1}}-{{b}_{1}}{{d}_{2}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}} \\
\end{align}\]
Therefore, intersection point of \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0\] and \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0\] is \[\left( \dfrac{{{b}_{2}}{{c}_{1}}-{{b}_{1}}{{d}_{2}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}},\dfrac{{{a}_{2}}{{c}_{1}}-{{a}_{1}}{{d}_{2}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}} \right)\].
Now the distance between these two points is the base length.
Thus,
Base \[=\sqrt{{{\left( \dfrac{{{b}_{2}}{{c}_{1}}-{{b}_{1}}{{c}_{2}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}-\dfrac{{{b}_{2}}{{c}_{1}}-{{b}_{1}}{{d}_{2}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}} \right)}^{2}}+{{\left( \dfrac{{{a}_{2}}{{c}_{1}}-{{a}_{1}}{{c}_{2}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}-\dfrac{{{a}_{2}}{{c}_{1}}-{{a}_{1}}{{d}_{2}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}} \right)}^{2}}}\]
Since the LCM is the same in all we take it out. Cancelling the like terms, we get,
Base \[=\dfrac{1}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}\sqrt{{{\left( {{b}_{1}}{{c}_{2}}+{{b}_{1}}{{d}_{2}} \right)}^{2}}+{{\left( -{{a}_{1}}{{c}_{2}}+{{a}_{1}}{{d}_{2}} \right)}^{2}}}\]
Taking out \[{{\left( {{c}_{2}}-{{d}_{2}} \right)}^{2}}\] as common we get,
Base \[=\dfrac{1}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}\sqrt{\left( {{\left( {{b}_{1}} \right)}^{2}}+{{\left( {{a}_{1}} \right)}^{2}} \right){{\left( {{c}_{2}}-{{d}_{2}} \right)}^{2}}}\]
Taking out \[{{\left( {{c}_{1}}-{{d}_{1}} \right)}^{2}}\] out of the root we get,
Base \[=\dfrac{\left( {{c}_{2}}-{{d}_{2}} \right)}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}\sqrt{\left( {{\left( {{b}_{1}} \right)}^{2}}+{{\left( {{a}_{1}} \right)}^{2}} \right)}\]
Now multiplying base and height we get,
Area \[=\dfrac{|{{d}_{1}}-{{c}_{1}}|}{\sqrt{{{a}_{1}}^{2}+{{b}_{1}}^{2}}}\times \dfrac{|{{c}_{2}}-{{d}_{2}}|}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}\sqrt{\left( {{\left( {{b}_{1}} \right)}^{2}}+{{\left( {{a}_{1}} \right)}^{2}} \right)}\]
Cancelling the common terms, we get,
Area \[=\dfrac{\left( {{d}_{1}}-{{c}_{1}} \right)\left( {{d}_{2}}-{{c}_{2}} \right)}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}\].
Thus option(d) is correct.
Note: You might get confused as to why we include modulus sign always while we take out something out of the root. That is because we do not want our area value to be negative. Also the modulus sign eats up the negative sign and we can adjust our signs accordingly. Thus we get our final answer.
Area = base × height.
We can find the height by calculating the distance between parallel lines. Then we will find the points of intersection between a pair of parallel lines and a non-parallel line. By that we will get two points. The distance between them is the length of the base. We will multiply these two and get the answer.
Complete step-by-step solution -
Let us begin with the solution.
First, let us calculate the distance between the parallel line pair \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0\] and\[{{a}_{1}}x+{{b}_{1}}y+{{d}_{1}}=0\].
Distance between parallel lines is given by the formula,
\[=\dfrac{|{{d}_{1}}-{{c}_{1}}|}{\sqrt{{{a}_{1}}^{2}+{{b}_{1}}^{2}}}\]
Therefore height between two parallel lines will be,
\[=\dfrac{|{{d}_{1}}-{{c}_{1}}|}{\sqrt{{{a}_{1}}^{2}+{{b}_{1}}^{2}}}\]
Now we need to find the intersection points between the pair of lines \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0\] and \[{{a}_{2}}x+{{b}_{2}}y+{{d}_{2}}=0\] and the line \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0\] .
Let us start with \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0\] and \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0\] .
\[\begin{align}
& {{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0..........\times {{a}_{1}} \\
& {{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0..........\times {{a}_{2}} \\
\end{align}\]
\[\begin{align}
& {{a}_{1}}{{a}_{2}}x+{{a}_{1}}{{b}_{2}}y+{{a}_{1}}{{c}_{2}}=0 \\
& {{a}_{2}}{{a}_{1}}x+{{a}_{2}}{{b}_{1}}y+{{a}_{2}}{{c}_{1}}=0 \\
\end{align}\]
Now subtracting and cancelling the like terms, we get,
\[\begin{align}
& {{a}_{1}}{{b}_{2}}y-{{a}_{2}}{{b}_{1}}y+{{a}_{1}}{{c}_{2}}-{{a}_{2}}{{c}_{1}}=0 \\
& y({{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}})={{a}_{2}}{{c}_{1}}-{{a}_{1}}{{c}_{2}} \\
& y=\dfrac{{{a}_{2}}{{c}_{1}}-{{a}_{1}}{{c}_{2}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}} \\
\end{align}\]
Now,
\[\begin{align}
& {{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0..........\times {{b}_{1}} \\
& {{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0..........\times {{b}_{2}} \\
\end{align}\]
\[\begin{align}
& {{b}_{1}}{{a}_{2}}x+{{b}_{1}}{{b}_{2}}y+{{b}_{1}}{{c}_{2}}=0 \\
& {{b}_{2}}{{a}_{1}}x+{{b}_{2}}{{b}_{1}}y+{{b}_{2}}{{c}_{1}}=0 \\
\end{align}\]
Subtracting and cancelling the like terms, we get,
\[\begin{align}
& {{a}_{2}}{{b}_{1}}x-{{b}_{2}}{{a}_{1}}x+{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}=0 \\
& x({{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}})={{b}_{2}}{{c}_{1}}-{{b}_{1}}{{c}_{2}} \\
& x=\dfrac{{{b}_{2}}{{c}_{1}}-{{b}_{1}}{{c}_{2}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}} \\
\end{align}\]
Therefore, intersection point of \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0\] and \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0\] is \[\left( \dfrac{{{b}_{2}}{{c}_{1}}-{{b}_{1}}{{c}_{2}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}},\dfrac{{{a}_{2}}{{c}_{1}}-{{a}_{1}}{{c}_{2}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}} \right)\].
Let us start with \[{{a}_{2}}x+{{b}_{2}}y+{{d}_{2}}=0\] and \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0\].
\[\begin{align}
& {{a}_{2}}x+{{b}_{2}}y+{{d}_{2}}=0..........\times {{a}_{1}} \\
& {{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0..........\times {{a}_{2}} \\
\end{align}\]
\[\begin{align}
& {{a}_{1}}{{a}_{2}}x+{{a}_{1}}{{b}_{2}}y+{{a}_{1}}{{d}_{2}}=0 \\
& {{a}_{2}}{{a}_{1}}x+{{a}_{2}}{{b}_{1}}y+{{a}_{2}}{{c}_{1}}=0 \\
\end{align}\]
Now subtracting and cancelling the like terms, we get,
\[\begin{align}
& {{a}_{1}}{{b}_{2}}y-{{a}_{2}}{{b}_{1}}y+{{a}_{1}}{{d}_{2}}-{{a}_{2}}{{c}_{1}}=0 \\
& y({{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}})={{a}_{2}}{{c}_{1}}-{{a}_{1}}{{d}_{2}} \\
& y=\dfrac{{{a}_{2}}{{c}_{1}}-{{a}_{1}}{{d}_{2}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}} \\
\end{align}\]
Now,
\[\begin{align}
& {{a}_{2}}x+{{b}_{2}}y+{{d}_{2}}=0..........\times {{b}_{1}} \\
& {{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0..........\times {{b}_{2}} \\
\end{align}\]
\[\begin{align}
& {{b}_{1}}{{a}_{2}}x+{{b}_{1}}{{b}_{2}}y+{{b}_{1}}{{d}_{2}}=0 \\
& {{b}_{2}}{{a}_{1}}x+{{b}_{2}}{{b}_{1}}y+{{b}_{2}}{{c}_{1}}=0 \\
\end{align}\]
Subtracting and cancelling the like terms, we get,
\[\begin{align}
& {{a}_{2}}{{b}_{1}}x-{{b}_{2}}{{a}_{1}}x+{{b}_{1}}{{d}_{2}}-{{b}_{2}}{{c}_{1}}=0 \\
& x({{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}})={{d}_{2}}{{c}_{1}}-{{b}_{1}}{{c}_{2}} \\
& x=\dfrac{{{b}_{2}}{{c}_{1}}-{{b}_{1}}{{d}_{2}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}} \\
\end{align}\]
Therefore, intersection point of \[{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0\] and \[{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0\] is \[\left( \dfrac{{{b}_{2}}{{c}_{1}}-{{b}_{1}}{{d}_{2}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}},\dfrac{{{a}_{2}}{{c}_{1}}-{{a}_{1}}{{d}_{2}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}} \right)\].
Now the distance between these two points is the base length.
Thus,
Base \[=\sqrt{{{\left( \dfrac{{{b}_{2}}{{c}_{1}}-{{b}_{1}}{{c}_{2}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}-\dfrac{{{b}_{2}}{{c}_{1}}-{{b}_{1}}{{d}_{2}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}} \right)}^{2}}+{{\left( \dfrac{{{a}_{2}}{{c}_{1}}-{{a}_{1}}{{c}_{2}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}-\dfrac{{{a}_{2}}{{c}_{1}}-{{a}_{1}}{{d}_{2}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}} \right)}^{2}}}\]
Since the LCM is the same in all we take it out. Cancelling the like terms, we get,
Base \[=\dfrac{1}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}\sqrt{{{\left( {{b}_{1}}{{c}_{2}}+{{b}_{1}}{{d}_{2}} \right)}^{2}}+{{\left( -{{a}_{1}}{{c}_{2}}+{{a}_{1}}{{d}_{2}} \right)}^{2}}}\]
Taking out \[{{\left( {{c}_{2}}-{{d}_{2}} \right)}^{2}}\] as common we get,
Base \[=\dfrac{1}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}\sqrt{\left( {{\left( {{b}_{1}} \right)}^{2}}+{{\left( {{a}_{1}} \right)}^{2}} \right){{\left( {{c}_{2}}-{{d}_{2}} \right)}^{2}}}\]
Taking out \[{{\left( {{c}_{1}}-{{d}_{1}} \right)}^{2}}\] out of the root we get,
Base \[=\dfrac{\left( {{c}_{2}}-{{d}_{2}} \right)}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}\sqrt{\left( {{\left( {{b}_{1}} \right)}^{2}}+{{\left( {{a}_{1}} \right)}^{2}} \right)}\]
Now multiplying base and height we get,
Area \[=\dfrac{|{{d}_{1}}-{{c}_{1}}|}{\sqrt{{{a}_{1}}^{2}+{{b}_{1}}^{2}}}\times \dfrac{|{{c}_{2}}-{{d}_{2}}|}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}\sqrt{\left( {{\left( {{b}_{1}} \right)}^{2}}+{{\left( {{a}_{1}} \right)}^{2}} \right)}\]
Cancelling the common terms, we get,
Area \[=\dfrac{\left( {{d}_{1}}-{{c}_{1}} \right)\left( {{d}_{2}}-{{c}_{2}} \right)}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}\].
Thus option(d) is correct.
Note: You might get confused as to why we include modulus sign always while we take out something out of the root. That is because we do not want our area value to be negative. Also the modulus sign eats up the negative sign and we can adjust our signs accordingly. Thus we get our final answer.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

