
Calculate $\tan {1^\circ }.\tan {2^\circ }.\tan {3^\circ }.....................\tan {89^\circ }.$
Answer
587.4k+ views
Hint:In this question first try to convert like $\tan {1^\circ }.\tan {2^\circ }.\tan {3^\circ }........\tan {45^\circ }...........\tan ({90^\circ } - {3^\circ }).\tan ({90^\circ } - {2^\circ }).\tan ({90^\circ } - {1^\circ })$ then use formula $\tan ({90^\circ } - \theta ) = \cot \theta $ and $\tan \theta .\cot \theta = 1$ from these we will proceed to the result .
Complete step-by-step answer:
So in this we have to find the value of $\tan {1^\circ }.\tan {2^\circ }.\tan {3^\circ }.....................\tan {89^\circ }.$
we know that the $\tan ({90^\circ } - \theta ) = \cot \theta $ So from this
$\tan {1^\circ }.\tan {2^\circ }.\tan {3^\circ }........\tan {45^\circ }...........\tan {87^\circ }.\tan {88^\circ }.\tan {89^\circ }.$
we can write it as
$\tan {1^\circ }.\tan {2^\circ }.\tan {3^\circ }........\tan {45^\circ }...........\tan ({90^\circ } - {3^\circ }).\tan ({90^\circ } - {2^\circ }).\tan ({90^\circ } - {1^\circ })$
So from here $\tan ({90^\circ } - \theta ) = \cot \theta $ hence ,
$\tan {1^\circ }.\tan {2^\circ }.\tan {3^\circ }........\tan {45^\circ }...........\cot {3^\circ }.\cot {2^\circ }.\cot {1^\circ }$
Since we know that the $\tan \theta .\cot \theta = 1$
Hence the term
$\tan {1^\circ }.\cot {1^\circ } = 1$
$\tan {2^\circ }.\cot {2^\circ } = 1$
$\tan {3^\circ }.\cot {3^\circ } = 1$
.............
Similarly $44$ pairs are found and have value is equal to $1$ one term is remaining that is $\tan {45^\circ }$
we know that $\tan {45^\circ } = 1$
$\tan {1^\circ }.\tan {2^\circ }.\tan {3^\circ }.\cot {3^\circ }.\cot {2^\circ }.\cot {1^\circ }.........\tan {45^\circ }$
On putting the values we get
$1.1.1.........1...$
Hence it is equal to $1$
The value of $\tan {1^\circ }.\tan {2^\circ }.\tan {3^\circ }.....................\tan {89^\circ } = 1$
Note:This question will be also framed like $\cot {1^\circ }.\cot {2^\circ }.\cot {3^\circ }.....................\cot {89^\circ }$ solve it as we solve above. The answer is also the same.In this two properties will use that is $\tan \theta .\cot \theta = 1$ and $\cot ({90^\circ } - \theta ) = \tan \theta $.Students should remember the important trigonometric identities and formulas for solving these types of questions.
Complete step-by-step answer:
So in this we have to find the value of $\tan {1^\circ }.\tan {2^\circ }.\tan {3^\circ }.....................\tan {89^\circ }.$
we know that the $\tan ({90^\circ } - \theta ) = \cot \theta $ So from this
$\tan {1^\circ }.\tan {2^\circ }.\tan {3^\circ }........\tan {45^\circ }...........\tan {87^\circ }.\tan {88^\circ }.\tan {89^\circ }.$
we can write it as
$\tan {1^\circ }.\tan {2^\circ }.\tan {3^\circ }........\tan {45^\circ }...........\tan ({90^\circ } - {3^\circ }).\tan ({90^\circ } - {2^\circ }).\tan ({90^\circ } - {1^\circ })$
So from here $\tan ({90^\circ } - \theta ) = \cot \theta $ hence ,
$\tan {1^\circ }.\tan {2^\circ }.\tan {3^\circ }........\tan {45^\circ }...........\cot {3^\circ }.\cot {2^\circ }.\cot {1^\circ }$
Since we know that the $\tan \theta .\cot \theta = 1$
Hence the term
$\tan {1^\circ }.\cot {1^\circ } = 1$
$\tan {2^\circ }.\cot {2^\circ } = 1$
$\tan {3^\circ }.\cot {3^\circ } = 1$
.............
Similarly $44$ pairs are found and have value is equal to $1$ one term is remaining that is $\tan {45^\circ }$
we know that $\tan {45^\circ } = 1$
$\tan {1^\circ }.\tan {2^\circ }.\tan {3^\circ }.\cot {3^\circ }.\cot {2^\circ }.\cot {1^\circ }.........\tan {45^\circ }$
On putting the values we get
$1.1.1.........1...$
Hence it is equal to $1$
The value of $\tan {1^\circ }.\tan {2^\circ }.\tan {3^\circ }.....................\tan {89^\circ } = 1$
Note:This question will be also framed like $\cot {1^\circ }.\cot {2^\circ }.\cot {3^\circ }.....................\cot {89^\circ }$ solve it as we solve above. The answer is also the same.In this two properties will use that is $\tan \theta .\cot \theta = 1$ and $\cot ({90^\circ } - \theta ) = \tan \theta $.Students should remember the important trigonometric identities and formulas for solving these types of questions.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

How many states of matter are there in total class 12 chemistry CBSE

