
Calculate standard enthalpy of formation for benzene from the following data.
\[{{\text{C}}_{6}}{{\text{H}}_{6(l)}}\text{+}\dfrac{15}{2}{{\text{O}}_{2(l)}}\to \text{6C}{{\text{O}}_{2(g)}}\text{+3}{{\text{H}}_{2}}{{\text{O}}_{(l)}}\text{ }\Delta {{\text{H}}^{\circ }}\text{=-3267KJ}\]
\[\begin{align}
& {{\Delta }_{f}}{{\text{H}}^{\circ }}\text{(C}{{\text{O}}_{2}}\text{)= -393}\text{.5 KJ/mole} \\
& {{\Delta }_{f}}{{\text{H}}^{\circ }}\text{(}{{\text{C}}_{2}}\text{O)= -285}\text{.8KJ/mole} \\
\end{align}\]
Answer
546.6k+ views
Hint: We calculate the calculate the enthalpy of the benzene by the formula as $\Delta {{\text{H}}^{\circ }}=\Sigma {{\Delta }_{f}}{{\text{H}}^{\circ }}\text{(products) -}\Sigma {{\Delta }_{f}}{{\text{H}}^{\circ }}\text{(reactants)}$, here \[\Delta {{\text{H}}^{\circ }}~\]is the total enthalpy of the reaction and whose value is given as \[3267\text{ }KJ\text{ }mol{{e}^{-1}}\] and ${{\Delta }_{f}}{{\text{H}}^{\circ }}\text{C}{{\text{O}}_{2(g)}}$=\[-393.5\text{ }KJ\text{ }mol{{e}^{-1}}\] , ${{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{H}}_{2}}{{\text{O}}_{l}}$= \[-258.8\text{ }KJ\text{ }mol{{e}^{-1}}\] and ${{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{O}}_{2(g)}}$=\[KJ\text{ }mol{{e}^{-1}}\] . Now calculate its enthalpy.
Complete step by step answer:
First of all, what is the enthalpy of formation? From the enthalpy of formation, we simplify the total change in the enthalpy of the reaction when 1mole of the compound is formed from its constituents’ elements.
- We can easily calculate the enthalpy of benzene in the following reaction as:
\[{{\text{C}}_{6}}{{\text{H}}_{6(l)}}\text{+}\dfrac{15}{2}{{\text{O}}_{2l}}\to \text{6C}{{\text{O}}_{2(g)}}\text{+3}{{\text{H}}_{2}}{{\text{O}}_{(l)}}\text{ }\Delta {{\text{H}}^{\circ }}\text{=-3267KJ}\]
$\Delta {{\text{H}}^{\circ }}=\Sigma {{\Delta }_{f}}{{\text{H}}^{\circ }}\text{(products) -}\Sigma {{\Delta }_{f}}{{\text{H}}^{\circ }}\text{(reactants)}$---------(A)
$\Sigma {{\Delta }_{f}}{{\text{H}}^{\circ }}\text{(products)}$= $6\times {{\Delta }_{f}}{{\text{H}}^{\circ }}\text{C}{{\text{O}}_{2(g)}}$ + $3\times {{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{H}}_{2}}{{\text{O}}_{l}}$---(1)
As we know that, ${{\Delta }_{f}}{{\text{H}}^{\circ }}\text{C}{{\text{O}}_{2(g)}}$=\[-393.5\text{ }KJ\text{ }mol{{e}^{-1}}\] (given)
${{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{H}}_{2}}{{\text{O}}_{l}}$= \[-258.8\text{ }KJ\text{ }mol{{e}^{-1}}\]
Put these values in equation(1), we get:
\[\begin{array}{*{35}{l}}
\Delta {{\text{H}}^{\circ }}~=6\text{ }\left( -393.5 \right)\text{ }+\text{ }3\left( -258.8 \right)\text{ }KJ\text{ }mol{{e}^{-1}} \\
~~~~~~~~=~-2361\text{ }+-\text{ }857.4\text{ }KJ\text{ }mol{{e}^{-1}} \\
~~~~~~~~=\text{ }-3218.4\text{ }KJ\text{ }mol{{e}^{-1}} \\
\end{array}\]
- Now, we will calculate the enthalpy for the reactants
\[\Sigma {{\Delta }_{f}}{{\text{H}}^{\circ }}(\text{reactants)}\] = $6\times {{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{C}}_{6}}{{\text{H}}_{6(l)}}$ + $\dfrac{15}{2}\times {{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{O}}_{2(g)}}$
As we know that, ${{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{C}}_{6}}{{\text{H}}_{6(l)}}$= \[x\text{ }KJ\text{ }mol{{e}^{-1}}\] (given)
${{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{O}}_{2(g)}}$= \[0KJ\text{ }mol{{e}^{-1}}\]
- Put all the values in equation(A), we get:
\[\Delta {{\text{H}}^{\circ }}~\]=$1012.5\text{ }+{{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{C}}_{6}}{{\text{H}}_{6(l)}}$ KJ/ mole
- As we know that ,\[\Delta {{\text{H}}^{\circ }}~\]= \[-3267\text{ }KJ\text{ }mol{{e}^{-1}}\], then;
$-3267\text{ }=\text{ }-3218.4\text{ }+{{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{C}}_{6}}{{\text{H}}_{6(l)}}\text{ }KJ\text{ }mol{{e}^{-1}}$
\[-3267\text{ }=\text{ }-3218.4\text{ }+\text{ }x\text{ }KJ\text{ }mol{{e}^{-1}}\]
\[x=\text{ }-\text{ }3267\text{ }+\text{ }3218.4\text{ =}-48.6~KJ\text{ }mol{{e}^{-1}}\]
- Thus, the standard enthalpy of formation for benzene from the reaction;
\[{{\text{C}}_{6}}{{\text{H}}_{6(l)}}\text{+}\dfrac{15}{2}{{\text{O}}_{2l}}\to \text{6C}{{\text{O}}_{2(g)}}\text{+3}{{\text{H}}_{2}}{{\text{O}}_{(l)}}\text{ }\Delta {{\text{H}}^{\circ }}\text{=-3267KJ}\]
is: \[-48.6~KJ\text{ }mol{{e}^{-1}}\].
Note: The enthalpy of formation of oxygen is taken as zero in the above reaction because when the elements are present in their molecular form like oxygen gas, or in any solid form etc. their standard enthalpy of formation is always taken as zero as they undergo no change in their formation.
Complete step by step answer:
First of all, what is the enthalpy of formation? From the enthalpy of formation, we simplify the total change in the enthalpy of the reaction when 1mole of the compound is formed from its constituents’ elements.
- We can easily calculate the enthalpy of benzene in the following reaction as:
\[{{\text{C}}_{6}}{{\text{H}}_{6(l)}}\text{+}\dfrac{15}{2}{{\text{O}}_{2l}}\to \text{6C}{{\text{O}}_{2(g)}}\text{+3}{{\text{H}}_{2}}{{\text{O}}_{(l)}}\text{ }\Delta {{\text{H}}^{\circ }}\text{=-3267KJ}\]
$\Delta {{\text{H}}^{\circ }}=\Sigma {{\Delta }_{f}}{{\text{H}}^{\circ }}\text{(products) -}\Sigma {{\Delta }_{f}}{{\text{H}}^{\circ }}\text{(reactants)}$---------(A)
$\Sigma {{\Delta }_{f}}{{\text{H}}^{\circ }}\text{(products)}$= $6\times {{\Delta }_{f}}{{\text{H}}^{\circ }}\text{C}{{\text{O}}_{2(g)}}$ + $3\times {{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{H}}_{2}}{{\text{O}}_{l}}$---(1)
As we know that, ${{\Delta }_{f}}{{\text{H}}^{\circ }}\text{C}{{\text{O}}_{2(g)}}$=\[-393.5\text{ }KJ\text{ }mol{{e}^{-1}}\] (given)
${{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{H}}_{2}}{{\text{O}}_{l}}$= \[-258.8\text{ }KJ\text{ }mol{{e}^{-1}}\]
Put these values in equation(1), we get:
\[\begin{array}{*{35}{l}}
\Delta {{\text{H}}^{\circ }}~=6\text{ }\left( -393.5 \right)\text{ }+\text{ }3\left( -258.8 \right)\text{ }KJ\text{ }mol{{e}^{-1}} \\
~~~~~~~~=~-2361\text{ }+-\text{ }857.4\text{ }KJ\text{ }mol{{e}^{-1}} \\
~~~~~~~~=\text{ }-3218.4\text{ }KJ\text{ }mol{{e}^{-1}} \\
\end{array}\]
- Now, we will calculate the enthalpy for the reactants
\[\Sigma {{\Delta }_{f}}{{\text{H}}^{\circ }}(\text{reactants)}\] = $6\times {{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{C}}_{6}}{{\text{H}}_{6(l)}}$ + $\dfrac{15}{2}\times {{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{O}}_{2(g)}}$
As we know that, ${{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{C}}_{6}}{{\text{H}}_{6(l)}}$= \[x\text{ }KJ\text{ }mol{{e}^{-1}}\] (given)
${{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{O}}_{2(g)}}$= \[0KJ\text{ }mol{{e}^{-1}}\]
- Put all the values in equation(A), we get:
\[\Delta {{\text{H}}^{\circ }}~\]=$1012.5\text{ }+{{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{C}}_{6}}{{\text{H}}_{6(l)}}$ KJ/ mole
- As we know that ,\[\Delta {{\text{H}}^{\circ }}~\]= \[-3267\text{ }KJ\text{ }mol{{e}^{-1}}\], then;
$-3267\text{ }=\text{ }-3218.4\text{ }+{{\Delta }_{f}}{{\text{H}}^{\circ }}{{\text{C}}_{6}}{{\text{H}}_{6(l)}}\text{ }KJ\text{ }mol{{e}^{-1}}$
\[-3267\text{ }=\text{ }-3218.4\text{ }+\text{ }x\text{ }KJ\text{ }mol{{e}^{-1}}\]
\[x=\text{ }-\text{ }3267\text{ }+\text{ }3218.4\text{ =}-48.6~KJ\text{ }mol{{e}^{-1}}\]
- Thus, the standard enthalpy of formation for benzene from the reaction;
\[{{\text{C}}_{6}}{{\text{H}}_{6(l)}}\text{+}\dfrac{15}{2}{{\text{O}}_{2l}}\to \text{6C}{{\text{O}}_{2(g)}}\text{+3}{{\text{H}}_{2}}{{\text{O}}_{(l)}}\text{ }\Delta {{\text{H}}^{\circ }}\text{=-3267KJ}\]
is: \[-48.6~KJ\text{ }mol{{e}^{-1}}\].
Note: The enthalpy of formation of oxygen is taken as zero in the above reaction because when the elements are present in their molecular form like oxygen gas, or in any solid form etc. their standard enthalpy of formation is always taken as zero as they undergo no change in their formation.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

