
How do you calculate $\sec \left( \dfrac{13\pi }{4} \right)$
Answer
540k+ views
Hint: Now we will first try to write the angle such that it is in the range of $\left( 0,2\pi \right)$ . Using this we will use different properties of cos such as $\cos \left( 2\pi +\theta \right)=\cos \theta $ and $\cos \left( \pi +\theta \right)=-\cos \theta $ . Hence using this we will try to find the value of $\cos \left( \dfrac{15\pi }{4} \right)$ .
Complete step by step answer:
Now we are given the sec function.
We know that the sec is a trigonometric ratio which gives us the ratio of Hypotenuse and adjacent side.
Now we know that cos is nothing but the inverse function of sec.
We will now try to use different trigonometric properties to simplify the expression and find its value.
Now consider $\sec \left( \dfrac{13\pi }{4} \right)$
We can write $13\pi =8\pi +5\pi $ now using this we get the equation as $\sec \left( \dfrac{8\pi +5\pi }{4} \right)$
Now separating the terms in sec function we get,
$\Rightarrow \sec \left( \dfrac{8\pi }{4}+\dfrac{5\pi }{4} \right)$
$\Rightarrow \sec \left( 2\pi +\dfrac{5\pi }{4} \right)$
Now we know that $\sec \theta =\dfrac{1}{\cos \theta }$ . Hence we will try to find the value of $\cos \left( 2\pi +\dfrac{5\pi }{4} \right)$
Now we know that $\cos \left( 2\pi +\theta \right)=\cos \theta $ .
Hence we get,
$\Rightarrow \cos \left( 2\pi +\dfrac{5\pi }{4} \right)=\cos \left( \dfrac{5\pi }{4} \right)$
Now again we will write $5\pi =4\pi +\pi $, Hence we get the equation as,
$\Rightarrow \cos \left( 2\pi +\dfrac{5\pi }{4} \right)=\cos \left( \dfrac{4\pi }{4}+\dfrac{\pi }{4} \right)$
$\Rightarrow \cos \left( 2\pi +\dfrac{5\pi }{4} \right)=\cos \left( \pi +\dfrac{\pi }{4} \right)$
Now we know that $\cos \left( \pi +\theta \right)=-\cos \theta $ hence using this we get,
$\Rightarrow \cos \left( 2\pi +\dfrac{5\pi }{4} \right)=-\cos \left( \dfrac{\pi }{4} \right)$
Now we know that the value of $\cos \left( \dfrac{\pi }{4} \right)$ is equal to $\dfrac{1}{\sqrt{2}}$
Hence using this we get
$\Rightarrow \cos \left( 2\pi +\dfrac{5\pi }{4} \right)=-\dfrac{1}{\sqrt{2}}$
Now using invertendo property we get the equation as,
$\begin{align}
& \Rightarrow \dfrac{1}{\cos \left( 2\pi +\dfrac{5\pi }{4} \right)}=-\sqrt{2} \\
& \Rightarrow \sec \left( 2\pi +\dfrac{5\pi }{4} \right)=-\sqrt{2} \\
\end{align}$
Hence we have the value of $\sec \left( \dfrac{13\pi }{4} \right)=-\sqrt{2}$
Note:
Now note that while calculating we can directly calculate the value of sec after simplifying. We can also use the property $\sec \left( \theta -2\pi \right)=\sec \theta $ and write the expression in this form to find the value of $\sec \left( \dfrac{3\pi }{4} \right)$ . Hence we can easily find the value of the expression.
Complete step by step answer:
Now we are given the sec function.
We know that the sec is a trigonometric ratio which gives us the ratio of Hypotenuse and adjacent side.
Now we know that cos is nothing but the inverse function of sec.
We will now try to use different trigonometric properties to simplify the expression and find its value.
Now consider $\sec \left( \dfrac{13\pi }{4} \right)$
We can write $13\pi =8\pi +5\pi $ now using this we get the equation as $\sec \left( \dfrac{8\pi +5\pi }{4} \right)$
Now separating the terms in sec function we get,
$\Rightarrow \sec \left( \dfrac{8\pi }{4}+\dfrac{5\pi }{4} \right)$
$\Rightarrow \sec \left( 2\pi +\dfrac{5\pi }{4} \right)$
Now we know that $\sec \theta =\dfrac{1}{\cos \theta }$ . Hence we will try to find the value of $\cos \left( 2\pi +\dfrac{5\pi }{4} \right)$
Now we know that $\cos \left( 2\pi +\theta \right)=\cos \theta $ .
Hence we get,
$\Rightarrow \cos \left( 2\pi +\dfrac{5\pi }{4} \right)=\cos \left( \dfrac{5\pi }{4} \right)$
Now again we will write $5\pi =4\pi +\pi $, Hence we get the equation as,
$\Rightarrow \cos \left( 2\pi +\dfrac{5\pi }{4} \right)=\cos \left( \dfrac{4\pi }{4}+\dfrac{\pi }{4} \right)$
$\Rightarrow \cos \left( 2\pi +\dfrac{5\pi }{4} \right)=\cos \left( \pi +\dfrac{\pi }{4} \right)$
Now we know that $\cos \left( \pi +\theta \right)=-\cos \theta $ hence using this we get,
$\Rightarrow \cos \left( 2\pi +\dfrac{5\pi }{4} \right)=-\cos \left( \dfrac{\pi }{4} \right)$
Now we know that the value of $\cos \left( \dfrac{\pi }{4} \right)$ is equal to $\dfrac{1}{\sqrt{2}}$
Hence using this we get
$\Rightarrow \cos \left( 2\pi +\dfrac{5\pi }{4} \right)=-\dfrac{1}{\sqrt{2}}$
Now using invertendo property we get the equation as,
$\begin{align}
& \Rightarrow \dfrac{1}{\cos \left( 2\pi +\dfrac{5\pi }{4} \right)}=-\sqrt{2} \\
& \Rightarrow \sec \left( 2\pi +\dfrac{5\pi }{4} \right)=-\sqrt{2} \\
\end{align}$
Hence we have the value of $\sec \left( \dfrac{13\pi }{4} \right)=-\sqrt{2}$
Note:
Now note that while calculating we can directly calculate the value of sec after simplifying. We can also use the property $\sec \left( \theta -2\pi \right)=\sec \theta $ and write the expression in this form to find the value of $\sec \left( \dfrac{3\pi }{4} \right)$ . Hence we can easily find the value of the expression.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

