
How do you calculate $\left( {{\tan }^{-1}}\left( 2 \right) \right)$ ?
Answer
557.7k+ views
Hint: In this problem we have to calculate the $\left( {{\tan }^{-1}}\left( 2 \right) \right)$. We will use $\dfrac{1}{1+{{x}^{2}}}=1-{{x}^{2}}+{{x}^{4}}-{{x}^{6}}+.....$ formula for this problem. We will integrate the above equation and simplify the obtained equation. We know that $\int{\dfrac{1}{1+{{x}^{2}}}}dx={{\tan }^{-1}}x+C$ . Here we need to calculate the value of ${{\tan }^{-1}}2$, which does not satisfy the condition $-1\le x\le 1$. So, we will use the trigonometric formula ${{\tan }^{-1}}x=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( \dfrac{1}{x} \right)$. So here we will get $x=\dfrac{1}{2}$ which satisfies $-1\le x\le 1$. Now we can use the integration value and use the Tylor series to get the result.
Formula used:
1. $\dfrac{1}{1+{{x}^{2}}}=1-{{x}^{2}}+{{x}^{4}}-{{x}^{6}}+.....$
2. $\int{\dfrac{1}{1+{{x}^{2}}}}dx={{\tan }^{-1}}x+C$
3. ${{\tan }^{-1}}x=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( \dfrac{1}{x} \right)$
4. $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C$
Complete Step by Step Procedure:
Given that, $\left( {{\tan }^{-1}}\left( 2 \right) \right) $
Consider the equation
$\dfrac{1}{1+{{x}^{2}}}=1-{{x}^{2}}+{{x}^{4}}-{{x}^{6}}+.....$
Integrating the above equation with respect to $x$, then we will get
$\int{\dfrac{1}{1+{{x}^{2}}}dx=\int{\left( 1-{{x}^{2}}+{{x}^{4}}-{{x}^{6}}+..... \right)dx}}$
We know that $\int{\dfrac{1}{1+{{x}^{2}}}}dx={{\tan }^{-1}}x+C$ and using the formula $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C$ in the above equation, then we will get
${{\tan }^{-1}}\left( x \right)=x-\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}-\dfrac{{{x}^{7}}}{7}+.....$
The above formula can be used when $-1\le x\le 1$. But in this problem, we have to calculate the value of ${{\tan }^{-1}}2$, where $x=2$ and $x>2$. So here we can’t use the above formula directly.
We have trigonometric equation i.e.,
${{\tan }^{-1}}x=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( \dfrac{1}{x} \right)$
Substituting $x=2$ in the above equation, then we will get
$\Rightarrow {{\tan }^{-1}}(2)=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( \dfrac{1}{2} \right)....\left( \text{i} \right)$
Now we will calculate the value of ${{\tan }^{-1}}\left( \dfrac{1}{2} \right)$ by using the above integration value.
Substituting the $x=\dfrac{1}{2}$in the integration value, then we will get
${{\tan }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{1}{2}-\dfrac{1}{8\times 4}+\dfrac{1}{32\times 5}-\dfrac{1}{128\times 7}+....$
Simplifying the above equation, then we will get
$\Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2} \right)=0.463467$
Now substitute ${{\tan }^{-1}}\left( \dfrac{1}{2} \right)=0.463467$in the equation $\left( \text{i} \right)$, then we will get
$\begin{align}
& \Rightarrow {{\tan }^{-1}}\left( 2 \right)=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( \dfrac{1}{2} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( 2 \right)=\dfrac{\pi }{2}-0.463467 \\
\end{align}$
Substituting the value of $\pi =3.14$ in the above equation, then we will get
$\begin{align}
& \Rightarrow {{\tan }^{-1}}\left( 2 \right)=1.52-0.463467 \\
& \Rightarrow {{\tan }^{-1}}\left( 2 \right)=1.107329 \\
\end{align}$
In the above equation we have the result in the radians. To convert the radians into degrees we will multiply above value with $\dfrac{180}{\pi }$,then
$\begin{align}
& {{\tan }^{-1}}\left( 2 \right)=\dfrac{180}{\pi }\times 1.107329 \\
& {{\tan }^{-1}}\left( 2 \right)=63.4452{}^\circ \\
\end{align}$
Note:
In the above problem, we have calculated the value of ${{\tan }^{-1}}x$ from the Tylor series. But it can be easier to use a scientific calculator to find the value of ${{\tan }^{-1}}x$. Because there is a drawback with this series. The series can only give the value of ${{\tan }^{-1}}x$ where $-1\le x\le 1$. For other values, we need to use some trigonometric identities and solve the problem according to the previous step.
Formula used:
1. $\dfrac{1}{1+{{x}^{2}}}=1-{{x}^{2}}+{{x}^{4}}-{{x}^{6}}+.....$
2. $\int{\dfrac{1}{1+{{x}^{2}}}}dx={{\tan }^{-1}}x+C$
3. ${{\tan }^{-1}}x=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( \dfrac{1}{x} \right)$
4. $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C$
Complete Step by Step Procedure:
Given that, $\left( {{\tan }^{-1}}\left( 2 \right) \right) $
Consider the equation
$\dfrac{1}{1+{{x}^{2}}}=1-{{x}^{2}}+{{x}^{4}}-{{x}^{6}}+.....$
Integrating the above equation with respect to $x$, then we will get
$\int{\dfrac{1}{1+{{x}^{2}}}dx=\int{\left( 1-{{x}^{2}}+{{x}^{4}}-{{x}^{6}}+..... \right)dx}}$
We know that $\int{\dfrac{1}{1+{{x}^{2}}}}dx={{\tan }^{-1}}x+C$ and using the formula $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C$ in the above equation, then we will get
${{\tan }^{-1}}\left( x \right)=x-\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}-\dfrac{{{x}^{7}}}{7}+.....$
The above formula can be used when $-1\le x\le 1$. But in this problem, we have to calculate the value of ${{\tan }^{-1}}2$, where $x=2$ and $x>2$. So here we can’t use the above formula directly.
We have trigonometric equation i.e.,
${{\tan }^{-1}}x=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( \dfrac{1}{x} \right)$
Substituting $x=2$ in the above equation, then we will get
$\Rightarrow {{\tan }^{-1}}(2)=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( \dfrac{1}{2} \right)....\left( \text{i} \right)$
Now we will calculate the value of ${{\tan }^{-1}}\left( \dfrac{1}{2} \right)$ by using the above integration value.
Substituting the $x=\dfrac{1}{2}$in the integration value, then we will get
${{\tan }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{1}{2}-\dfrac{1}{8\times 4}+\dfrac{1}{32\times 5}-\dfrac{1}{128\times 7}+....$
Simplifying the above equation, then we will get
$\Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{2} \right)=0.463467$
Now substitute ${{\tan }^{-1}}\left( \dfrac{1}{2} \right)=0.463467$in the equation $\left( \text{i} \right)$, then we will get
$\begin{align}
& \Rightarrow {{\tan }^{-1}}\left( 2 \right)=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( \dfrac{1}{2} \right) \\
& \Rightarrow {{\tan }^{-1}}\left( 2 \right)=\dfrac{\pi }{2}-0.463467 \\
\end{align}$
Substituting the value of $\pi =3.14$ in the above equation, then we will get
$\begin{align}
& \Rightarrow {{\tan }^{-1}}\left( 2 \right)=1.52-0.463467 \\
& \Rightarrow {{\tan }^{-1}}\left( 2 \right)=1.107329 \\
\end{align}$
In the above equation we have the result in the radians. To convert the radians into degrees we will multiply above value with $\dfrac{180}{\pi }$,then
$\begin{align}
& {{\tan }^{-1}}\left( 2 \right)=\dfrac{180}{\pi }\times 1.107329 \\
& {{\tan }^{-1}}\left( 2 \right)=63.4452{}^\circ \\
\end{align}$
Note:
In the above problem, we have calculated the value of ${{\tan }^{-1}}x$ from the Tylor series. But it can be easier to use a scientific calculator to find the value of ${{\tan }^{-1}}x$. Because there is a drawback with this series. The series can only give the value of ${{\tan }^{-1}}x$ where $-1\le x\le 1$. For other values, we need to use some trigonometric identities and solve the problem according to the previous step.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

