
Calculate \[\int {\dfrac{{\sqrt {\cos 2x} }}{{\cos x}}} \,dx\].
Answer
412.8k+ views
Hint:Here in this question we have to integrate the given function, since the function involves the trigonometric function. We use the trigonometric formulas which relate to the question and by substitution method whenever it is necessary we are solving the given function.
Complete step by step answer:
In an integration we come across two kinds of integral namely, definite integral and indefinite integral.Now consider the given question.
\[ \Rightarrow \int {\dfrac{{\sqrt {\cos 2x} }}{{\cos x}}} \,dx\]
This is an indefinite integral.
Taking the square root both numerator and denominator we have
\[ \Rightarrow \int {\sqrt {\dfrac{{\cos 2x}}{{{{\cos }^2}x}}} } \,dx\]
By the double angle formula of trigonometry we have \[\cos 2x = 2{\cos ^2}x - 1\]
\[ \Rightarrow \int {\sqrt {\dfrac{{2{{\cos }^2}x - 1}}{{{{\cos }^2}x}}} } \,dx\]
On simplifying we get
\[ \Rightarrow \int {\sqrt {2 - {{\sec }^2}x} } \,dx\]
By the trigonometric identity we know that \[1 + {\tan ^2}x = {\sec ^2}x\]
\[ \Rightarrow \int {\sqrt {2 - (1 + {{\tan }^2}x)} } \,dx\]
On considering the sign conventions the above term is written as
\[ \Rightarrow \int {\sqrt {2 - 1 - {{\tan }^2}x} } \,dx\]
\[ \Rightarrow \int {\sqrt {1 - {{\tan }^2}x} } \,dx\]----(1)
Now substitute \[\tan x = \sin y\]----(2), on differentiating this we get \[{\sec ^2}x\,dx = \cos y\,dy\]
\[ \Rightarrow dx = \dfrac{{\cos y}}{{{{\sec }^2}x}}\,dy = \dfrac{{\cos y}}{{1 + {{\tan }^2}x}}\,dy = \dfrac{{\cos y}}{{1 + {{\sin }^2}y}}\,dy\] ----(3)
On substituting the equation (2) and equation (3) in the equation (1) we have
\[ \Rightarrow \int {\sqrt {1 - {{\sin }^2}y} } \,.\dfrac{{\cos y}}{{1 + {{\sin }^2}y}}\,dy\]
By the trigonometric identity we know that \[\sqrt {1 - {{\sin }^2}y} = \cos y\]
\[ \Rightarrow \int {\cos y} \,.\dfrac{{\cos y}}{{1 + {{\sin }^2}y}}\,dy\]
\[ \Rightarrow \int {\dfrac{{{{\cos }^2}y}}{{1 + {{\sin }^2}y}}\,dy} \]
In the numerator add 1 and subtract 1 we have
\[ \Rightarrow \int {\dfrac{{{{\cos }^2}y + 1 - 1}}{{1 + {{\sin }^2}y}}\,dy} \]
By the trigonometric identity we know that \[1 - {\sin ^2}y = {\cos ^2}y\]
\[ \Rightarrow \int {\dfrac{{1 - {{\sin }^2}y + 1 - 1}}{{1 + {{\sin }^2}y}}\,dy} \]
On simplifying the numerator term we have
\[ \Rightarrow \int {\dfrac{{2 - 1 - {{\sin }^2}y}}{{1 + {{\sin }^2}y}}\,dy} \]
\[ \Rightarrow \int {\dfrac{{2 - (1 + {{\sin }^2}y)}}{{1 + {{\sin }^2}y}}\,dy} \]
Taking the integral to each term
\[ \Rightarrow \int {\dfrac{2}{{1 + {{\sin }^2}y}}\,dy} + \int {\dfrac{{ - (1 + {{\sin }^2}y)}}{{1 + {{\sin }^2}y}}} \,dy\]
\[ \Rightarrow \int {\dfrac{2}{{1 + {{\sin }^2}y}}\,dy} - \int {dy} \]
On applying the integration to the second term
\[ \Rightarrow - y + \int {\dfrac{2}{{1 + {{\sin }^2}y}}\,dy} \]
By the trigonometric identity we know that \[{\sin ^2}y + {\cos ^2}y = 1\]
\[ \Rightarrow - y + \int {\dfrac{2}{{{{\sin }^2}y + {{\cos }^2}y + {{\sin }^2}y}}\,dy} \]
\[ \Rightarrow - y + \int {\dfrac{2}{{2{{\sin }^2}y + {{\cos }^2}y}}\,dy} \]
Multiply both the numerator and denominator term by \[{\sec ^2}y\]
\[ \Rightarrow - y + \int {\dfrac{{2{{\sec }^2}y}}{{2{{\sin }^2}y{{\sec }^2}y + {{\cos }^2}y{{\sec }^2}y}}\,dy} \]
By using the definition of trigonometric ratio we have
\[ \Rightarrow - y + \int {\dfrac{{2{{\sec }^2}y}}{{2{{\tan }^2}y + 1}}\,dy} \]
\[ \Rightarrow - y + \int {\dfrac{{\sqrt 2 .\sqrt 2 {{\sec }^2}y}}{{1 + \left( {\sqrt 2 \tan y} \right)}}\,dy} \]------(4)
Substitute \[\sqrt 2 \tan y = u\]----(5), on differentiating we have
\[ \Rightarrow \sqrt 2 {\sec ^2}y\,dy = du\]---(6)
On substituting the equation (6) and equation (5) in the equation (4)
\[ \Rightarrow - y + \int {\dfrac{{\sqrt 2 \,du}}{{1 + {u^2}}}\,} \]
On applying the integration we get
\[ \Rightarrow - y + \sqrt 2 {\tan ^{ - 1}}(u) + c\]
On substituting the value of u we have
\[ \Rightarrow - y + \sqrt 2 {\tan ^{ - 1}}(2\tan y) + c\]
On substituting the value of y we get
\[ \therefore - {\sin ^{ - 1}}(\tan x) + \sqrt 2 {\tan ^{ - 1}}(2\tan {\sin ^{ - 1}}(\tan x)) + c\]
Note:When we are integrating the function by substitution method, after applying the integration we have to substitute the value which was considered. On substituting the function will be in the simplest form where we can integrate easily. Sometimes we need to substitute the terms more than once where it is necessary.
Complete step by step answer:
In an integration we come across two kinds of integral namely, definite integral and indefinite integral.Now consider the given question.
\[ \Rightarrow \int {\dfrac{{\sqrt {\cos 2x} }}{{\cos x}}} \,dx\]
This is an indefinite integral.
Taking the square root both numerator and denominator we have
\[ \Rightarrow \int {\sqrt {\dfrac{{\cos 2x}}{{{{\cos }^2}x}}} } \,dx\]
By the double angle formula of trigonometry we have \[\cos 2x = 2{\cos ^2}x - 1\]
\[ \Rightarrow \int {\sqrt {\dfrac{{2{{\cos }^2}x - 1}}{{{{\cos }^2}x}}} } \,dx\]
On simplifying we get
\[ \Rightarrow \int {\sqrt {2 - {{\sec }^2}x} } \,dx\]
By the trigonometric identity we know that \[1 + {\tan ^2}x = {\sec ^2}x\]
\[ \Rightarrow \int {\sqrt {2 - (1 + {{\tan }^2}x)} } \,dx\]
On considering the sign conventions the above term is written as
\[ \Rightarrow \int {\sqrt {2 - 1 - {{\tan }^2}x} } \,dx\]
\[ \Rightarrow \int {\sqrt {1 - {{\tan }^2}x} } \,dx\]----(1)
Now substitute \[\tan x = \sin y\]----(2), on differentiating this we get \[{\sec ^2}x\,dx = \cos y\,dy\]
\[ \Rightarrow dx = \dfrac{{\cos y}}{{{{\sec }^2}x}}\,dy = \dfrac{{\cos y}}{{1 + {{\tan }^2}x}}\,dy = \dfrac{{\cos y}}{{1 + {{\sin }^2}y}}\,dy\] ----(3)
On substituting the equation (2) and equation (3) in the equation (1) we have
\[ \Rightarrow \int {\sqrt {1 - {{\sin }^2}y} } \,.\dfrac{{\cos y}}{{1 + {{\sin }^2}y}}\,dy\]
By the trigonometric identity we know that \[\sqrt {1 - {{\sin }^2}y} = \cos y\]
\[ \Rightarrow \int {\cos y} \,.\dfrac{{\cos y}}{{1 + {{\sin }^2}y}}\,dy\]
\[ \Rightarrow \int {\dfrac{{{{\cos }^2}y}}{{1 + {{\sin }^2}y}}\,dy} \]
In the numerator add 1 and subtract 1 we have
\[ \Rightarrow \int {\dfrac{{{{\cos }^2}y + 1 - 1}}{{1 + {{\sin }^2}y}}\,dy} \]
By the trigonometric identity we know that \[1 - {\sin ^2}y = {\cos ^2}y\]
\[ \Rightarrow \int {\dfrac{{1 - {{\sin }^2}y + 1 - 1}}{{1 + {{\sin }^2}y}}\,dy} \]
On simplifying the numerator term we have
\[ \Rightarrow \int {\dfrac{{2 - 1 - {{\sin }^2}y}}{{1 + {{\sin }^2}y}}\,dy} \]
\[ \Rightarrow \int {\dfrac{{2 - (1 + {{\sin }^2}y)}}{{1 + {{\sin }^2}y}}\,dy} \]
Taking the integral to each term
\[ \Rightarrow \int {\dfrac{2}{{1 + {{\sin }^2}y}}\,dy} + \int {\dfrac{{ - (1 + {{\sin }^2}y)}}{{1 + {{\sin }^2}y}}} \,dy\]
\[ \Rightarrow \int {\dfrac{2}{{1 + {{\sin }^2}y}}\,dy} - \int {dy} \]
On applying the integration to the second term
\[ \Rightarrow - y + \int {\dfrac{2}{{1 + {{\sin }^2}y}}\,dy} \]
By the trigonometric identity we know that \[{\sin ^2}y + {\cos ^2}y = 1\]
\[ \Rightarrow - y + \int {\dfrac{2}{{{{\sin }^2}y + {{\cos }^2}y + {{\sin }^2}y}}\,dy} \]
\[ \Rightarrow - y + \int {\dfrac{2}{{2{{\sin }^2}y + {{\cos }^2}y}}\,dy} \]
Multiply both the numerator and denominator term by \[{\sec ^2}y\]
\[ \Rightarrow - y + \int {\dfrac{{2{{\sec }^2}y}}{{2{{\sin }^2}y{{\sec }^2}y + {{\cos }^2}y{{\sec }^2}y}}\,dy} \]
By using the definition of trigonometric ratio we have
\[ \Rightarrow - y + \int {\dfrac{{2{{\sec }^2}y}}{{2{{\tan }^2}y + 1}}\,dy} \]
\[ \Rightarrow - y + \int {\dfrac{{\sqrt 2 .\sqrt 2 {{\sec }^2}y}}{{1 + \left( {\sqrt 2 \tan y} \right)}}\,dy} \]------(4)
Substitute \[\sqrt 2 \tan y = u\]----(5), on differentiating we have
\[ \Rightarrow \sqrt 2 {\sec ^2}y\,dy = du\]---(6)
On substituting the equation (6) and equation (5) in the equation (4)
\[ \Rightarrow - y + \int {\dfrac{{\sqrt 2 \,du}}{{1 + {u^2}}}\,} \]
On applying the integration we get
\[ \Rightarrow - y + \sqrt 2 {\tan ^{ - 1}}(u) + c\]
On substituting the value of u we have
\[ \Rightarrow - y + \sqrt 2 {\tan ^{ - 1}}(2\tan y) + c\]
On substituting the value of y we get
\[ \therefore - {\sin ^{ - 1}}(\tan x) + \sqrt 2 {\tan ^{ - 1}}(2\tan {\sin ^{ - 1}}(\tan x)) + c\]
Note:When we are integrating the function by substitution method, after applying the integration we have to substitute the value which was considered. On substituting the function will be in the simplest form where we can integrate easily. Sometimes we need to substitute the terms more than once where it is necessary.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
