
By selling an article for Rs 600 more, Karthik would have made a 5% profit on his sale instead of an 11% loss. What was his cost price?
A 3750
B 3650
C 3350
D 3950
Answer
605.7k+ views
Hint: Find the selling prices of the article, when Karthik made a 5% profit and 11% loss. Next, subtract the obtained selling prices and put it equal to 600.
Assume, the cost price of the given article as $x$.
Complete step-by-step solution -
If Karthik made 5%.profit on his sale; we can obtain the selling price of the article as shown below.
${\text{Selling price of the article}} = \left( {100 + 5} \right)\% \,of \,x \\$
$\Rightarrow {\text{Selling price of the article}} = 105\% \,of\,x \\$
$\Rightarrow {\text{Selling price of the article}} = 1.05\,x \\ $
Again, if Karthik made 11%.loss on his sale; we can obtain the selling price of the article as shown below.
${\text{Selling price of the article}} = \left( {100 - 11} \right)\% \,of\,x \\$
$ \Rightarrow {\text{Selling price of the article}} = 89\% \,of\,x \\$
$\Rightarrow {\text{Selling price of the article}} = 0.89\,x \\ $
According to the question,
$1.05x - 0.89x = 600 \\$
$\Rightarrow \,0.16x = 600 \\$
$ \Rightarrow \,x = \dfrac{{600}}{{0.16}} \\$
$\Rightarrow \,x = 3750 \\ $
Thus, the cost price of the article is Rs.3750; hence, option (A) is the correct answer.
Note: The difference in the selling prices of the article is equal to the increase in the price of the article. Students sometimes become confused with profit and gain, here profit and gain both are to be the same quantity. When the selling price is more than the cost price the seller earns gain/profit while if the cost price is more than the selling price the seller earns loss.
Assume, the cost price of the given article as $x$.
Complete step-by-step solution -
If Karthik made 5%.profit on his sale; we can obtain the selling price of the article as shown below.
${\text{Selling price of the article}} = \left( {100 + 5} \right)\% \,of \,x \\$
$\Rightarrow {\text{Selling price of the article}} = 105\% \,of\,x \\$
$\Rightarrow {\text{Selling price of the article}} = 1.05\,x \\ $
Again, if Karthik made 11%.loss on his sale; we can obtain the selling price of the article as shown below.
${\text{Selling price of the article}} = \left( {100 - 11} \right)\% \,of\,x \\$
$ \Rightarrow {\text{Selling price of the article}} = 89\% \,of\,x \\$
$\Rightarrow {\text{Selling price of the article}} = 0.89\,x \\ $
According to the question,
$1.05x - 0.89x = 600 \\$
$\Rightarrow \,0.16x = 600 \\$
$ \Rightarrow \,x = \dfrac{{600}}{{0.16}} \\$
$\Rightarrow \,x = 3750 \\ $
Thus, the cost price of the article is Rs.3750; hence, option (A) is the correct answer.
Note: The difference in the selling prices of the article is equal to the increase in the price of the article. Students sometimes become confused with profit and gain, here profit and gain both are to be the same quantity. When the selling price is more than the cost price the seller earns gain/profit while if the cost price is more than the selling price the seller earns loss.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

